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ABSTRACT 

As an effective tool for knowledge representation and uncertainty reasoning, Bayesian networks (BNs) are widely used 

in various fields. However, learning the structure of BN is an NP-hard problem. It is impractical to rely solely on the 

experience and knowledge of domain experts to build BN. Data-driven learning of BN has become a necessity. For the 

learning of a BN structure with data containing continuous variables, the typical method is to discretize the data or 

assume that the data follows the Gaussian distribution, and then apply the traditional BN structure learning methods to 

discover the causal relationship. The discretization inevitably leads to the loss of valuable information of the data. Real-

world data sometimes may not follow the Gaussian distribution, which can cause deviation in causality. In this paper, a 

new constraint-based BN learning method for continuous variables is proposed for BN structure learning. Mutual 

information and conditional mutual information are derived by a non-parametric kernel density estimation (KDE). The 

correlation between any two nodes can be determined without assumptions. As new conditional independence tests, they 

are used in the max-min parents and children (MMPC) algorithm, which is a typical constraint-based method. We 

compare the proposed method with traditional BN methods using well-known benchmark networks. Synthetic 

continuous data are generated by linear structural equations. The experimental results show that our method has a good 

performance. It can be used as an effective BN structure learning method for continuous variables. 

Keywords: Bayesian networks, kernel density estimation, constraint-based structure learning, mutual information, 

conditional mutual information, max-min parents and children 

1. INTRODUCTION 

Bayesian networks (BNs) play an important role in probabilistic graphical learning. BN can describe qualitative and 

quantitative dependencies between variables by graphical structural and probabilistic representations, respectively1. With 

a solid theoretical foundation and intuitive representation, BN has a powerful inference capability. It is an effective tool 

for modeling and reasoning. The method has been widely used in control theory, information retrieval, medical 

diagnosis, bioinformatics, and computational biology2. 

Unfortunately, BN structure learning is an NP-hard problem. Many BN structure learning algorithms have been 

proposed, such as sparse candidate (SC)3, Peter and Clark (PC)4, three-phase dependency analysis (TPDA)5, and max-

min parents and children (MMPC)6. These algorithms can be effectively implemented for discrete variables, but they are not 

designed for continuous variables. For continuous variables, a common handling way is to do discretization7. This method 

will not only lose valid information but also may lead to false dependence in the obtained network8. Researchers have 

explored an alternative method, which usually assumes that the samples follow a multivariate Gaussian distribution9. L1-

regularized Markov blanket (L1MB)10 and total conditioning (TC)11 were proposed for BN structure learning under the 

assumption that the data follow a multivariate Gaussian distribution. However, data in the real world may not follow the 

multivariate Gaussian distribution. A two-stage algorithm has been proposed for data with non-multivariate Gaussian 

distributions12. This method has a high complexity and limited accuracy during network structure learning. 

Kernel density estimation (KDE) is a non-parametric estimation method. As a distribution-free estimation, it has been 

widely used in various learning tasks13. We propose a new MMPC based on the KDE (MMPC-KDE) for continuous 

variables. The mutual information and conditional mutual information are derived by KDE for conditional independence 
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testing. It can discover the correlation between different variables and improve the learning effect for continuous 

variables. As conditional independence testing for continuous variables, they can be used by any constraint-based BN 

structure learning method. 

2. BAYESIAN NETWORK 

BN is a probabilistic graphical model that describes the dependence between random variables. The definition of BN can 

be described by using the directed acyclic graph (DAG). A Bayesian network is a binary set ),( θG=BN , where 

),( EVG =  is a DAG, },...,{ 1 d=θ is the conditional probability distribution. Each node in the graph is represented one 

of the random variables in the set },..,,...,{ 1 di xxx=x . Their correlations are described the edges in the set E. The 

conditional probability distribution for each variable is given by the following equation. 

                        ))(|( iix
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Here )( ixPa denotes the set of parent nodes of ix  in G . Usually, ),( θG=BN  and }),...,,{,(
2 di xxx PPPBN G=  are 

equivalent. Any BN satisfies the Markov property. By giving the parent node set of any variable, x ix , the non-

descendant nodes are represented by )( ixND  and it satisfies the condition )(|)( iii xPaxNDx ⊥ . According to the 

Markov property, the joint probability distribution of ),( θG=BN  can be simplified as the following equation. 
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3. MUTUAL INFORMATION AND CONDITIONAL MUTUAL INFORMATION USING 

KDE 

A Gaussian kernel is used to smoothly estimate the probability density function, the mutual information and conditional 

mutual information are obtained by using the estimation. It does not need to assume the distribution form of the data. It is 

able to handle arbitrary complex distribution shapes. In this section, we offer the principles of KDE first. Then, the 

mutual information and the conditional mutual information are derived based on the Gaussian kernel function. 

3.1 Kernel density estimation 

By applying a kernel function to each data point and adding the outcome of the kernel function, KDE can generate a 

smooth density curve that reflects the distribution characteristics14. Assuming samples  m21 ,...,, XXX=X , d

k RX  , 

independently and identically obey an unknown multivariate probability density function F. For a given observed vector 
 , the expression for multivariate KDE is shown below. 
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Here )(oP  is the probability density function of the d-dimensional observer o obtained by KDE. K(.)is the kernel 

function. h  is called the smoothing parameter, also known as the window width. m is the number of samples. There are 

many choices of kernel functions for KDE, with the Gaussian kernel function being the most common one. Gaussian 

kernel function is used for continuous data and it is shown as following equation. 
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The expression for the multivariate Gaussian KDE is obtained from equations (3) and (4) as shown in the following 

equation. 
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3.2 Mutual information and conditional mutual information with Gaussian kernel estimation 

Differential entropy and joint differential entropy are measures of uncertainty for continuous random variables and their 

joint distributions15. Given continuous random variables 1x  and 2x , the probability density functions )( 1xP  and 

),( 21 xxP , differential entropy )( 1xH  and joint differential entropy ),( 21 xxH are defined in the following equation. 

−= 1111 )(log)()( dxxPxPxH                                                                    (6) 

−= 21212121 ),(log),(),( dxdxxxPxxPxxH                                                (7) 

Mutual information and conditional mutual information can be represented by differential entropy and joint differential 

entropy, which are the following equation. 

),()()(),( 212121 xxHxHxHxxMI −+=                                                         (8) 

),,()(),(),()|,( 32133231321 xxxHxHxxHxxHxxxCMI −−+=                                          (9) 

Simplifying the above equation and approximating the mutual information and conditional mutual information using 

Monte Carlo integrals results for continuous variable. 
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Here, )( 1xP , ),( 21 xxP  and ),,( 321 xxxP  can be calculated using equation (5). n is the number of the observers. The 

mutual information and conditional mutual information based on Gaussian KDE are shown in the following equation. 
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4. CONSTRAINT-BASED BN STRUCTURE LEARNING USING GAUSSIAN KDE 

We first discussed the principle of the MMPC algorithm. Then, we use the KDE for independence testing in the MMPC. 

MMPC is a constraint-based algorithm for learning the structure of BN. The algorithm determines the network structure 

by discovering independence between variables. 

4.1 MMPC algorithm 

The MMPC algorithm is a constraint-based local causal discovery algorithm. MMPC views variables as nodes in the 

graph. The algorithm measures the conditional dependence between two nodes by using the correlation function. A large 

value indicates that the conditional dependence between the nodes is strong. An edge exists between those two nodes. 
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When the function value is zero, it indicates that there is no dependency between the two nodes, which means the 

variables are independent. There will be no edge between the two nodes. An MMPC algorithm includes a growing phase 

and a shrinking phase. In the growing phase, a Max-Min strategy is used to heuristically introduce nodes into a set of 

candidate parent-child (CPC) for the target node tx . Specifically, we calculate the minimum correlation value between 

all other nodes and the target node, and select the node with the highest correlation value to add to the CPC of the target 

node tx . Given all subsets of CPC, if all remaining nodes are independent of the target node, the growing phase will be 

ended. The shrinking phase mainly removes the variables that should not enter the growing phase. If there is a node ix  in 

the CPC of the target variable tx , ix  and tx  will be tested for conditional independence with S as the condition set, and 

if it is independent, the variable ix  will be removed from the CPC. 

4.2 MMPC-KDE algorithm 

In the MMPC algorithm, the Chi-square testing is usually used to define the correlation function between variables. 

However, their correlation functions are only applicable to discrete data. Therefore, we will use the mutual information 

and conditional mutual information based on Gaussian KDE as the correlation function to mention the MMPC-KDE 

algorithm and the structure of the MMPC-KDE algorithm is shown in Algorithm 1. MMPC can output the undirected 

graph. 

Algorithm 1 MMPC-KDE 

Input: Dataset D ; Variable set },...,{ 1 dxxx = ; threshold value   

Output: undirected graph G 

1.  For  xxt    do 

2. 
   

{})( =txCPC  

3.     Repeat 

4.        Calculation )|,(MinMax )( SxxCMIAssocF tixCPCSxx ti =  using equations (12) and (13) 

5.        Calculation )|,(MinMaxarg )( SxxCMIx tixCPCSxxF ti =  using equations (12) and (13) 

6.        If 0AssocF  then 

7.            
Ftt xxCPCxCPC = )()(  

8.        Else 

9.            )()( tt xCPCxCPC =  

10.      End if 

11.   Until )( txCPC  has not changed 

12.   For )( ti xCPCx   do 

13.       If )( txCPCS   and )|,( SxxCMI ti  using equations (12) and (13) then 

14.           }{)()( itt xxCPCxCPC −=  

15.       Else  

16.           )()( tt xCPCxCPC =  

17.       End if 

18.   End for 

19. End for 

20. Return undirected graph G using the obtained CPC group 

The skeleton of the network is obtained from the undirected graph. The undirected graph can be turned into a directed 

graph using orientation rules to correctly discover the dependencies between random variables. The orientation algorithm 

of Spirtes-Glymour-Scheines16 is adopted in this paper. As shown in Algorithm 2, the algorithm consists of two steps, the 

first one is to identify V structure and the second one is to maximize orientation based on constraint propagation. In v-

structure, the intermediate node is a common child node of its two parent nodes, and these two parent nodes are 

independent of each other. When we observe such a structure, we can be certain that the direction of the edge points from 

the two parent nodes to the middle node. Conversely, if we attempt to change the direction of the edges, it will disrupt 

the existing v-structure and may introduce unnecessary conditional dependencies. 
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Algorithm 2 Orientation algorithm 

Input: undirected graph G 

Output: maximize DAG 

1. For zu xx −  and zv xx −  do 

 

2.     If )(  )( vuz xSxSx   then  

3.         The directions of the set to zu xx → and zv xx → and gives the V-type structure }{ vzu xxxV →=  

4.     End if 

5. End for 

6. If G is changed by the following rule, continue, otherwise go to Step 17 then 

7.     If ux  and vx  are not adjacent, and vzu xxx −→  is adjacent then 

8.         Then the orientation is vzu xxx →→  

9.     End if 

10.   If ux  is adjacent to vx  and there is a strictly oriented path from ux  to vx  then 

11.       Then set the direction vu xx −  to 
vu xx → . 

12.   End if 

13.   If vu xx − , and simultaneously satisfy vzu xxx →− , vwu xxx →−  then 

14.       Then set the direction vu xx →  

15.   End if  

16. End if 

17. Return maximize DAG 

5. EXPERIMENTAL RESULTS 

In the experiment, synthetic data are generated based on linear equations and classical reference BN. We compared the 

average learning results of traditional discretization MMPC and MMPC-KDE algorithms. Secondly, we also compared 

the L1MB, Two-phase, TC, and MMPC-KDE in terms of different structural errors. 

5.1 Datasets and evaluation metrics 

This paper primarily utilizes benchmark networks such as ALARM, CHILD, and ASIA to create datasets for testing and 

evaluating the algorithm’s performance. The three benchmark networks are shown in Table 1. Since the classical 

benchmark networks are usually used for data with discrete variables, this paper generates the continuous synthetic 

dataset by linear structural equations and the reference network structure relationship17. 

 
)1,0()( randxPawx i

T

xi i
+=

 
(14)

 

Table 1. The benchmark networks. 

No Network name Number of nodes Number of edges 

1 ASIA 8 8 

2 CHILD 20 25 

3 ALARM 37 46 

Here the value of each random variable ix  is a linear combination function of the value of its parent node )( ixPa  and a 

random perturbation term. In this equation, 
T

xi
w  is the weight vector of random variable ix  with respect to its parent 

Proc. of SPIE Vol. 13395  133951N-5



node, which is generated randomly. The values of each random variable ix  and its parent node )( ixPa  do not follow a 

Gaussian distribution. In this paper, we use uniform distribution generation instead of Gaussian distribution. The 

perturbation terms are also generated by uniform distribution. 

We use the metric of structural error to evaluate the effectiveness of the methods. By comparing the obtained network 

with the reference network, we calculate the structure errors, which include all the errors such as missing edges, extra 

edges, and reversed edges. The lower the structural errors, the better the network. 

5.2 Experimental results 

We first compare the MMPC algorithm with the MMPC-KDE algorithm using the benchmark networks. The traditional 

MMPC algorithm uses the equidistant scattering of the data and the Chi-square testing for BN learning18. For each 

network, we generate datasets with sample sizes of 1000 and 5000, respectively. In the experiments, we set the threshold 

a to 0.01 and used the classical window width for KDE19. Each algorithm is repeated 5 times on the same dataset. The 

average value of the structural errors is used for the analysis. Figure 1 shows the reference structure of the CHILD 

network and the optimal learning outcomes of MMPC and MMPC-KDE using a dataset with 5000 samples. Compared 

with the MMPC algorithm using the Chi-square testing, the missing edges, extra edges, and reversed edges of the BN 

obtained by the MMPC-KDE algorithm are lower.  

 

Figure 1. Comparison of network structures using MMPC and MMPC-KDE on the CHILD network. 

Table 2. Experimental results of MMPC and MMPC-KDE algorithm on different datasets. 

Dataset Algorithm 
Missing 

edges 

Extra 

edges 

Reversed 

edges 

Structural 

errors 

ASIA-1000 
MMPC 3.33 1.00 2.33 6.66 

MMPC-KDE 3.00 0.33 1.33 4.66 

ASIA-5000 
MMPC 2.67 1.67 1.67 6.01 

MMPC-KDE 2.67 0.00 1.00 3.67 

CHILD-1000 
MMPC 16.00 3.00 4.00 23.00 

MMPC-KDE 11.33 0.00 3.00 14.33 

CHILD-5000 
MMPC 9.67 5.00 7.00 21.67 

MMPC-KDE 10.00 0.00 2.33 12.33 

ALARM-1000 
MMPC 26.33 6.33 5.33 37.99 

MMPC-KDE 24.00 6.00 5.00 35.00 

ALARM-5000 
MMPC 18.00 8.67 6.67 33.34 

MMPC-KDE 15.33 10.33 3.00 28.66 

Table 2 summarizes the experimental results of MMPC and MMPC-KDE algorithms on the different datasets. As can be 
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seen from the table, MMPC-KDE has a smaller structural error than the MMPC algorithm for each network. With the 

increase in sample size, the structural errors of the algorithm decrease and the network becomes more accurate. To 

demonstrate the superiority of our algorithm, we compare other BN structure learning algorithms for continuous 

variables, such as L1MB, Two-phase, and TC algorithms. We recorded the number of structural errors of each algorithm 

5 times for three benchmark networks with different samples. Figures 2-4 show the comparison results. In each figure, 

the horizontal coordinate represents the different data and the vertical coordinate represents the structural errors. For the 

same reference network, the MMPC-KDE algorithm has a reduction in structural errors as the sample size increases. 

Compared with the results of the Two-phase, the L1MB and TC algorithms have larger structural errors in all 

experiments. L1MB and TC do not work for non-Gaussian continuous data. MMPC-KDE is overall better than the two-

phase algorithms. 

 

Figure 2. Comparison of structural errors for different algorithms (ASIA). 

 

Figure 3. Comparison of structural errors for different algorithms (CHILD). 

 

Figure 4. Comparison of structural errors for different algorithms (ALARM). 

Non-Gaussian distributed data tend to contain more outliers. The bias correlation coefficient is more sensitive to outliers, 

and the presence of outliers may lead to inaccurate estimates of the bias correlation coefficient in the Two-phase 

algorithm. Overall, the MMPC-KDE algorithm demonstrates optimal performance in this experiment, with the smallest 

structural error. 
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6. CONCLUSION 

This paper proposes a new constraint-based BN structure learning method for continuous variables, which uses the KDE 

to calculate the mutual information and the conditional mutual information. By using the statistical indicators and 

MMPC, the accuracy of BN structure learning for continuous variables is improved. This method provides a new 

conditional independence testing using continuous data. It can be used on any existing constraint-based BN structure 

learning algorithm. Compared with the original MMPC algorithm, the MMPC-KDE algorithm can achieve higher 

accuracy. Compared with other BN structure learning algorithms, MMPC-KDE shows higher performance. In future 

research work, the window width of KDE needs to be optimized to improve the accuracy of BN structure learning. 
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