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ABSTRACT   

At present, vehicle routing optimization has become the key to improving logistics efficiency and reducing costs. This 

article proposes an improved ant colony algorithm to address the limitations of traditional ant colony algorithms in the 

optimal path problem for vehicles. The core of this study is to improve the pheromone update model of ant colony 

algorithm and validate it by constructing an experimental environment. The improved ant colony algorithm proposed in 

this article has significant performance improvements in solving vehicle path optimization problems, and is feasible and 

superior in practical applications, especially in terms of search efficiency. This algorithm provides a new perspective for 

future research directions. 
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1. INTRODUCTION 

Vehicle routing problem is one of the important research topics in intelligent transportation applications in recent years. 

Reasonably allocating and optimizing logistics vehicles can reduce vehicle expenses, improve the transportation efficiency 

of logistics vehicles, and increase user satisfaction and economic benefits for enterprises1. Therefore, how to optimize the 

vehicle routing problem has important theoretical and economic significance. 

Dorigo2 first proposed the concept of ant colony algorithm and explained that the inspiration for this algorithm comes from 

the behavior of ants discovering paths while searching for food. Huang et al.3 combines K-means algorithm with heuristic 

algorithm to solve the optimal delivery path for vehicles. Li et al.4 simulated a semi open time window delivery model in 

rural logistics distribution, expanding the scope of ant colony algorithm solutions., On the basis of establishing a logistics 

path optimization model, Wu et al.5 considered multiple distribution centers, effectively reducing costs while ensuring 

customer satisfaction. Li et al.6 recompiled the pheromone volatilization mechanism of ant colony algorithm, applied 

variable neighborhood search, and proposed an improved ant colony algorithm, which improved the initial solution and 

solving process.; Zhu et al.7 addresses the shortcomings of traditional ant colony algorithms in solving indoor evacuation 

problems, such as slow convergence speed and susceptibility to local optima. The dynamic parameters of the fire scene 

are introduced into the ant colony algorithm to improve its path selection strategy, heuristic function, and pheromone 

update strategy, in order to solve for a better evacuation path for the entire evacuation population; Yang et al.8 studies the 

optimization problem of logistics paths, aiming to effectively reduce the distance of logistics distribution, achieve high 

efficiency and low cost in completing distribution tasks, and propose an improved ant colony algorithm by optimizing the 

heuristic function of the basic ant colony algorithm. Zhao et al.9 adopts two methods, local optimization and global 

optimization, to expand the pheromone update method of traditional ant colony algorithm to the optimal solution search 

range, and extends the function definition range of the heuristic factor to the initial node. Chen et al.10 proposes an improved 

ant colony optimization algorithm that utilizes global information of the working environment to establish a target 

attraction function, increasing the probability of ant colony selecting the optimal path to reach the target point and 

shortening the iteration time of the algorithm; Liu et al.11 improved the pheromone update method based on the standard 

ant colony algorithm, and added the nearest neighbor algorithm and local optimal search strategy to solve the ant path 

selection problem in the early stage of the algorithm. At the same time, the dynamic pheromone update method was used 

 
*13739149@qq.com; phone 13544617586 

International Conference on Optics, Electronics, and Communication Engineering (OECE 2024), 
edited by Yang Yue, Proc. of SPIE Vol. 13395, 133952E · © 2024 SPIE · 0277-786X · Published 

under a Creative Commons Attribution CC-BY 3.0 License · doi: 10.1117/12.3049001

Proc. of SPIE Vol. 13395  133952E-1



to optimize and improve the standard ant colony algorithm, making it tend towards global convergence. The experiment 

showed that the performance of the algorithm was effectively improved; 

This study addresses the limitations of traditional classical ant colony algorithms and improves the updating method of 

pheromone concentration by optimizing the total amount of pheromones to enhance global search capabilities, in order to 

better meet the requirements of solving the optimal path problem in transportation systems. In this case, this article proposes 

an improved method based on ant colony algorithm to construct an optimal transportation path optimization model. 

2. ENVIRONMENTAL MODELING 

The essence of the optimal transportation path optimization problem is a scientifically reasonable logistics transportation 

path, such as minimizing transportation time, shortest path, and lowest distribution cost, while satisfying constraints to a 

certain extent, such as the maximum load capacity of vehicles and the completion time of transportation. The optimal path 

optimization problem for logistics transportation can be described by a directed graph F=(M, N), where the user and 

transportation point are denoted as M = {𝑚0, 𝑚1, 𝑚2, … 𝑚𝑛}; The directed arc between the user and the transportation 

point is expressed as P = {(𝑚𝑥, 𝑚𝑦)|𝑚𝑥, 𝑚𝑦 , 𝑥 ≠ 𝑦}. 

For a weighted directed graph G (V, {E}), where V is the set of vertices, E is the set of arcs, c (v, w) is the weight of the 

arc, and Pst = (v0=vs, v1=, ..., vn=vt) is a path from vs to vt in V, the optimal path problem can be expressed as the following 

mathematical model: 

Lmin (Pst) 

s. t. {

𝑇(𝑃𝑠𝑡) = ∑ 𝑐(𝑣𝑖 , 𝑣𝑖+1)𝑛−1
𝑖=0

𝑐(𝑣𝑖,𝑣𝑖+1) ≥ 0

𝑖 = 0, ⋯ , 𝑛 − 1
0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑛

                                  (1) 

The analysis indicates that the optimal path optimization problem in transportation is fundamentally a combinatorial 

optimization problem. The Ant Colony Algorithm is inspired by the foraging behavior of ants. Despite their limited vision, 

ants can efficiently locate the shortest path from a food source to their nest. Research has shown that ants communicate 

through pheromones deposited on the paths they traverse. Paths with higher concentrations of pheromones are more 

attractive to ants, leading them to prefer these routes. Additionally, as ants traverse a path, they release more pheromones, 

reinforcing its attractiveness. This process creates a positive feedback loop. Over time, this mechanism results in the 

convergence towards an optimal path, ultimately identifying the shortest route from the nest to the food source. 

3. TRADITIONAL ANT COLONY ALGORITHM AND MODEL 

Ants release pheromones on the path between their nest and food, and initially choose the next feasible path with equal 

probability regardless of the length of the path. Later, as the number of iterations increased, ants would choose routes with 

higher pheromone concentrations when moving, resulting in an increasing number of ants on shorter routes and a 

decreasing number on longer routes. Therefore, through these pheromones, ants can find the shortest path from their nest 

to food. 

Assuming m is the number of ants and 𝜌𝑖𝑗(𝑡) is the concentration of pheromones on path (i, j) at time t. All ants start 

from the starting point of path planning, and each ant calculates the transition probability based on the concentration of 

pheromones on adjacent paths at node i when choosing its path. The transition probability of ant k (k=1, 2, 3, ..., n) from 

node i to node j at time t is: 

𝑃𝑖𝑗
𝑘 (t) = {([𝜑𝑖𝑗(𝑡)])

𝛼
∙ [𝜎𝑖𝑗(𝑡)]

𝛽
(∑ [𝜌𝑖𝑗(𝑡)]

𝛼
∙ [𝜎𝑖𝑗(𝑡)]

𝛽
𝑠⊆𝐴𝑘

⁄

0, 𝑜𝑡h𝑒𝑟
, 𝑗 ∈ 𝐴𝑘                  (2) 

In equation (2), 𝑃𝑖𝑗
𝑘 (t) represents the transition probability of ant k between road nodes i and j at time t; [𝜎𝑖𝑗(𝑡)]

𝛽
 

represents the heuristic function; [𝜑𝑖𝑗(𝑡)]
𝛼

 represents the pheromone concentration of the corresponding path between 

ant and road nodes i and j, 𝐴𝑘 = {N − 𝑡𝑘} represents the set of road nodes that ant 𝐴𝑘 wants to access, 𝜎𝑖𝑗 represents 

the expected degree of transition from node i to node j, usually 𝜎𝑖𝑗 = 1/𝑑𝑖𝑗, where 𝑑𝑖𝑗  represents the distance from node 

i to node j. 
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After ants complete a search for all nodes, they need to update the concentration of pheromones. Using the Ant-Cycle 

model, the concentration of pheromones on the path (i, j) at time t+Δt is: 

𝜑𝑖𝑗(𝑡 + ∆𝑡) = (1 − 𝜌) ∙ 𝜑𝑖𝑗(𝑡) + ∆𝜑𝑖𝑗(𝑡)                              (3) 

∆𝜑𝑖𝑗(𝑡) = ∑ ∆𝜑𝑖𝑗
𝑘 (𝑡)  𝑚

𝑘=1                                   (4) 

∆𝜑𝑖𝑗(𝑡) = {

Q

Ln
,        Ant n passes through (i, j)

0,       Ant n has not passed through (i, j)
                      (5) 

4. IMPROVED ANT COLONY ALGORITHM BASED ON PHEROMONE UPDATE 

METHOD 

4.1 Principle of limiting pheromone concentration 

We set the minimum value 𝜑𝑚𝑖𝑛  and maximum value 𝜑𝑚𝑎𝑥  of pheromone concentration on each path, with the 

pheromone concentration on each path limited to between [𝜑𝑚𝑖𝑛, 𝜑𝑚𝑎𝑥]. In the improved ant colony algorithm, the lower 

limit of pheromone concentration is set to 𝜑𝑚𝑖𝑛. Although the probability of choosing these paths is very small, it will 

not be zero, which avoids the phenomenon of ants stagnating and enables them to conduct higher-level searches; Due to 

the fact that in classical ant colony algorithms, the capacity of the road network is not taken into account when searching 

for the optimal path, congestion may occur. The improved ant colony algorithm considers that each path in the actual 

transportation network has a maximum carrying capacity, so the upper limit of pheromone strength is set to 𝜑𝑚𝑎𝑥. 

4.2 Improvement of pheromone local update algorithm 

In the actual transportation network, there is a phenomenon that the passing time on a certain road increase with the increase 

of traffic flow. The use of pheromone local update method can make the edges with higher pheromone concentration less 

attractive to the ants behind, thus making the ants have stronger exploration ability for the unselected edges. Moreover, 

experiments have shown that local update rules can effectively prevent ants from converging to the same path. Therefore, 

in this paper, the pheromone update method during ant walking is set as the local update principle. Using a smoothing 

mechanism, when ants pass through path (i, j), the concentration of pheromones on path (i, j) is updated as follows: 

𝜑𝑖𝑗(𝑡 + 1) = {
(1 − 𝛿)𝜑𝑖𝑗(𝑡) + 𝛿𝜑0, 𝜑𝑚𝑖𝑛 ≤ 𝜑𝑖𝑗 ≤ 𝜑𝑚

(1 − 𝛿)𝜑𝑖𝑗(𝑡),                    𝜑𝑚 ≤ 𝜑𝑖𝑗 ≤ 𝜑𝑚𝑎𝑥
                          (6) 

In equation (6), 𝛿 is a parameter on [0,1], 𝜑0 = 1
𝑛𝐿𝑏𝑒𝑠𝑡

⁄  is an empirical observation value, which is a very small 

number, n is the number of nodes in the network, 𝐿𝑏𝑒𝑠𝑡  is the shortest path length in this cycle, and 𝜑𝑚 is the critical 

value, which is determined according to the specific experimental situation. 

4.3 Improvement of pheromone update model 

The factors that affect the optimal path selection for vehicle transportation processes include transportation time, cost, and 

road smoothness. To quickly obtain the optimal solution, a mathematical model based on multiple constraint conditions is 

constructed for path selection based on transportation time, transportation cost, and road smoothness factors. It is combined 

with ant colony algorithm to achieve path updating and dynamic selection with multiple constraint conditions as the carrier, 

guiding logistics transportation selection towards the optimal path. 

4.3.1 Transportation time elements 

I1(𝑗) = {
𝑇𝑗

𝑇𝑗𝑚𝑎𝑥
⁄ , 𝑇𝑗 ≤ 𝑇𝑗𝑚𝑎𝑥

0,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                         (7) 

𝑇𝑗𝑚𝑎𝑥 is the maximum expected time limit allowed in transportation; 𝑇𝑗 represents the specific time required for logistics 

transportation, and 𝑇𝑗 ≤ 𝑇𝑗𝑚𝑎𝑥  and I1(𝑗) represent the transportation time elements, whose values are the ratio between 

the specific time at transportation node j and the expected longest time. The larger the value, the longer the actual 

transportation time. 
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4.3.2 Elements of transportation costs 

I2(𝑗) = {
𝑉𝑗

𝑉𝑗𝑚𝑎𝑥
⁄ , 𝑉𝑗 ≤ 𝑉𝑗𝑚𝑎𝑥

0,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                    (8) 

A is the transportation cost element, whose value is the ratio between the cost required for transportation at node j and 

the estimated maximum cost. The larger its value, the higher the actual transportation cost. 𝑉𝑗 represents the cost 

required for transportation at node j, and 𝑉𝑗𝑚𝑎𝑥  is the estimated maximum cost. Among them： 

𝑉𝑗 = 𝑎𝑏𝑡𝑎𝑠𝑖𝑜𝑛𝑗 + 𝑇𝑜𝑙𝑙𝑗 + 𝐹𝑢𝑒𝑙𝑦 , 𝑉𝑗 ≤ 𝑉𝑗𝑚𝑎𝑥                             (9) 

A is the cost of road transportation losses, 𝑇𝑜𝑙𝑙𝑗  is the cost of tolls, and 𝐹𝑢𝑒𝑙𝑦 is the cost of fuel. 

4.3.3 Smooth road elements 

I3(𝑗) = {
𝑄𝑗

𝑂𝑗𝑚𝑎𝑥
⁄ , 𝑄𝑗 ≤ 𝑄𝑗𝑚𝑎𝑥

0,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                    (10) 

I3(𝑗) is the factor of average road smoothness, which refers to the ratio between the smoothness of the transportation path 

at node j and the minimum tolerance of road smoothness. The larger the value, the smoother the selected path of the 

transportation vehicle; 𝑄𝑗  is the smoothness of the transportation path at node j, and 𝑄𝑗𝑚𝑎𝑥  is the minimum tolerance 

for road smoothness. 

In summary, the constraint function is: 

I(𝑗) = 𝛽𝐼1(y) + γ𝐼2(y) + 𝛿𝐼3(y)                                    (11) 

Among them, 𝛽 , γ , and 𝛿  are the actual proportions of time, cost, and road smoothness consumed by vehicle 

transportation at node j. 

5. EXPERIMENTAL SIMULATION AND RESULTS 

5.1 Problem description 

Suppose there is a transportation center with 20 customers who need to transport goods, numbered 1-20. The transportation 

center location (numbered 0, coordinates (4, 35)) needs to transport goods to these customers every day. The transportation 

center can dispatch 4 vehicles per day. For the convenience of testing, map the coordinates of the transportation center and 

the positions of 20 customers onto the XOY plane, as shown in Figure 1. The location coordinates of each customer and 

the daily volume of goods transported are shown in Table 1. 

 

Figure 1. Coordinate diagram of chain stores and warehouses. 

Table 1. Location coordinates of chain stores and daily supply demand. 

No. x y No. x y No. x y No. x y 

1 28 50 6 59 2 11 58 49 16 58 16 

2 35 5 7 47 24 12 50 42 17 35 10 
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No. x y No. x y No. x y No. x y 

3 25 15 8 65 47 13 53 52 18 65 28 

4 74 15 9 52 15 14 40 52 19 75 41 

5 35 40 10 46 14 15 47 27 20 72 22 

5.2 Simulation results and analysis 

For this case, traditional ant colony algorithm (AC), adaptive transfer ant colony algorithm (AAC), and the improved ant 

colony algorithm proposed in this paper were used for simulation calculations. Table 2 presents the distribution costs, 

convergence generations, and running time results of three ant colony algorithms based on this case, which were run 10 times. 

Table 2 The running results of three ant colony algorithms. 

Number of 
experiments 

AC AAC This article’s algorithm 

Delivery 
cost 

Convergent 
algebra 

Running 
time 

Delivery 
cost 

Convergent 
algebra 

Running 
time 

Delivery 
cost 

Convergent 
algebra 

Running 
time 

1 520.6 37 22.2 518.4 31 17.9 513 36 21.1 

2 520.2 33 22.9 517.9 30 20.5 514.5 30 19 

3 520.5 34 24.6 518 36 18.9 513.6 32 22.2 

4 520.2 56 21.2 518.1 32 28.3 513 31 19.3 

5 520.6 34 22.4 518.4 48 21.4 514.4 30 17.3 

6 519.9 37 19.6 518.5 35 20.3 514.5 32 18 

7 521 37 20.7 519.5 32 21.9 514.3 37 17.1 

8 520.9 33 20.5 518.4 33 25.3 513 28 21.1 

9 519.9 37 26.4 518.9 31 19.6 513 35 16.9 

10 521 33 24.3 518.7 30 19.9 513 36 18.1 

Worst value 521 56 26.4 519.5 48 28.3 514.5 37 22.2 

Best value 519.9 33 19.6 517.9 30 17.9 513 28 16.9 

Average value 520.4 37.1 22.48 518.48 33.8 21.4 513.63 32.7 19.01 

From Table 2, it can be seen that the delivery cost of the AC algorithm is concentrated around 520, with no significant 

breakthrough. The minimum convergence algebra is 33 and the maximum is 56, with significant variation and instability; 

The delivery cost of AAC algorithm is mainly concentrated around 518, with no significant changes and no obvious 

regularity in convergence algebra. Compared with the previous two ant colony algorithms, this paper improves the ant 

colony algorithm to make substantial progress and breakthroughs in delivery cost, breaking through the constraint of 515 

and converging to 513 with a 50% probability. The optimal convergence algebra is also the lowest at 28. In addition, 

compared with the running time of the three algorithms, our algorithm outperforms the first two ant colony algorithms in 

terms of optimal value, worst value, and average value. Below are the delivery costs, optimal delivery plans, and 

convergence algebras for three algorithms, as shown in Figures 2-4. 
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(a) Delivery cost of AC algorithm            (b) Optimal delivery plan of AC algorithm 

Figure 2. AC algorithm planned delivery plan and delivery cost. 

       

(a) The delivery cost of AAC algorithm         (b) The optimal delivery plan of AAC algorithm 

Figure 3. Distribution plan and cost planned by AAC Algorithm. 

       

(a) The delivery cost of this algorithm           (b) The optimal delivery plan of this algorithm 

Figure 4. The distribution plan and cost of the algorithm planning in this article 

By comparing Figures 2-4, it can be seen that the AC algorithm found the optimal path in the 34th generation, with one 

route being 0-1-5-14-13-12-0. After completing branches 1 and 5, it goes to branch 14, which obviously violates the axiom 

of “the shortest line segment between two points”. Therefore, this route is definitely not optimal. After a long period of 

turbulent search, the AC algorithm finally converged at 520. The AAC algorithm drew the optimal path in the 31st 

generation and finally converged at 518. Although the vehicle route was optimized, there were still intersecting routes, 

indicating that there is still room for improvement. The optimal path of the improved ant colony algorithm in this article 

was completed in the 29th generation and finally converged at 513. Compared with the AC algorithm and AAC algorithm, 

it shortened the convergence algebra by 17.24% and 6.89% respectively, and reduced the delivery cost by 1.37% and 0.97% 

respectively. This article improves the ant colony algorithm to ensure that there are no detours or intersecting paths in the 

vehicle route, making it the optimal path. In summary, the algorithm proposed in this article has significantly improved 

time efficiency and delivery costs compared to traditional ant colony algorithms, and is more efficient in solving optimal 

path planning problems in transportation networks. 
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6. CONCLUSION 

The vehicle transportation path selection problem significantly affects enterprise transportation costs, time, and efficiency. 

This article modifies the traditional ant colony algorithm by limiting pheromone concentration on paths and incorporating 

constraints based on transportation time, cost, and average road smoothness factors. These enhancements aim to improve 

the algorithm’s global optimization capability, ultimately leading to shorter delivery paths, reduced costs, and enhanced 

efficiency. 
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