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ABSTRACT 

The aim of hyperspectral image (HSI) classification is to define categories for the different labels that are assigned to each 

pixel vector. Generative adversarial network (GAN) can mitigate the limited training sample dilemma to some extent, but 

there are still two critical issues, namely balance collapse and insufficient sample diversity. In this article, we propose a 

Coupled Dual-Channel Generative Adversarial Network for HSI classification. It mainly consists of a Coupled Generative 

Network (CGN) and a Dual-Channel Discriminative Network (DDN). CGN achieves the reconstruction of HSI samples 

through cascaded convolutional layers, in which the label information of the samples is used to avoid the balance collapse, 

while DDN extracts spatial attention weights and spectral attention weights of the input true/false samples respectively, 

and performs feature mining in both spatial and spectral dimensions in a dual-channel style. In order to reinforce the 

detailed features of input samples in both spatial and spectral dimensions, we design a new Cascaded Spatial-Spectral 

Attention Block (CSSAB). Finally, feature maps at different scales are fused for final sample discrimination and 

classification, which can mitigate the effects of insufficient sample diversity. Experimental results on two HSI data sets 

demonstrate that the proposed CDGAN effectively improves the classification performance compared to some state-of-

the-art GAN-based methods. 

Keywords: Convolutional neural network, generative adversarial network, HSI classification, spatial-spectral, attention 

mechanism 

1. INTRODUCTION 

The fine spectral bands of hyperspectral image (HSI) provide rich semantic information on the ground surface in remote 

sensing field, so that the spectral bands and spatial distribution characteristics of HSI can be used for the application of 

feature classification. Deep learning models train classifiers while sufficiently extracting high-level features through 

nonlinear transformations, and continuously optimize themselves in a data-driven manner. Convolutional neural networks 

(CNNs) use local connections to extract spatial features and reduce the number of parameters by sharing weights. Owing 

to this superiority, HSI classification methods based on CNNs and their variants1-7 have gained much popularity in recent 

years. However, although CNN models have greatly reduced the number of parameters, training these parameters still 

requires a large amount of labeled data which are known to be costly. Without enough sufficient labeled data, these CNN-

based models are usually overtrained thus causing overfitting problems. 

Generative Adversarial Networks (GANs)8 have excellent generalization capabilities and can generate high-quality 

samples independent of the quality of unlabeled data. A GAN model usually contains a generator and a discriminator, 

where the generator generates fake data that are as real as possible, and the discriminator tries to discriminate real data 

from fake data. By adversarial competition between the two networks, both sides get the optimal results. This paper 

proposes a HSI classification method based on Coupled Dual-Channel Generative Adversarial Network (CDGAN). This 

method up samples the input data in a parameter-sharing coupled manner, and achieves the goal of fitting virtual samples 

through coupled generative networks. Moreover, a novel Cascaded Spatial-Spectral Attention Block (CSSAB) is 

introduced to refine the features of generated samples. In the discriminative network, the input samples are fused based on 

the spatial-spectral cascaded attention details, and then the key information is mined by a dual-channel spatial-spectral 

feature extraction structure. The classification of features is accomplished simultaneously during the confrontation between 

the generative network and the discriminative network. In this paper, we first introduce the related work pertaining to our 

topic. This is followed by a detailed explanation of our methodology used to develop the model. Subsequently, we present 
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the results of our experiments and offer comparisons and detail analysis discussion for the presented models. 

2. PROPOSED METHOD 

2.1 Coupled dual-channel generative adversarial network model  

The framework of the Coupled Dual-Channel Generative Adversarial Network (CDGAN) is shown in Figure 1, which 

consists of a Coupled Generative Network (CGN) and a Dual-Channel Discriminative Network (DDN) based on a coupled 

structure. 

 

Figure 1. The framework of CDGAN for HSI classification. 

2.1.1 Sample generation based on coupled generative networks. In CGN, the label vectors and the noise vector are fed into 

separated branches of the network. The feature map of the label vectors 
1 Ty  will first be fed into a one-dimensional 

convolutional layer for initial information mapping, and transformed into 1 1 ( /2)

1

C y , where T is the class number. 

Each of the convolution layers is followed by a BN layer and a ReLU activation function, except for the last transpose 

convolution (TConv) layer. After BN and ReLU, the feature map 1y  is then fed into three successive 2D TConv layers for 

spatial-scale upsampling to progressively reconstruct the spatial information. 

In these three TConv layers, the first two convolutional kernels are both of size 3×3 containing / 2C  channels, with an 

upsampling step of 1. The corresponding parameters of the last TConv layer are 5×5, / 2C , 1, thus obtaining a new feature 

map 9 9 ( /2)

2

C y . To ensure the spectral characteristics of the generated samples, a convolutional layer with a kernel of 

size 1×1 will accomplish the reconstruction of the spectral information of 
2y  with / 2C  convolutional kernels and obtain 

9 9 ( /2)

3

C y . Similarly, the branch in which the noise vector 1Z  is located will accomplish the reconstruction of 

both spatial and spectral dimensions in the same way and obtain 
9 9 ( /2)

3

C Z . The two vectors are concatenated together 

in the spectral dimension to obtain 9 9 C g . After then, 9 9 C g  is fed into CSSAB to enhance the key information 

in the generated feature maps and suppress the representation of interference information. Ultimately, the feature map 

achieves the final detail reconstruction of the sample through a 2D convolutional layer of size 3×3, which completes the 
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generation of the sample 9 9 C g  through a hyperbolic tangent activation function. 

2.1.2 Discrimination and classification based on two-branch discriminative networks. In DDN, the input samples are first 

processed by CSSAB to obtain a spatial attention detail mask 9 9 C

spa

 A  and a spectral attention detail mask 

e

C C

sp

A . Subsequently, the spectral attention espA  is matrix multiplied with the input sample d , and the aggregation 

in the spectral dimension is performed guided by this weighting factor to obtain the spatial feature 
 

. Similarly, the spatial attention spaA  is used to guide the aggregation of the spatial information on the input sample to 

obtain the spectral feature 1 C

spe

d . Both feature maps are obtained and regularized through the BN layer, and at the 

end, the features will be concatenated together and sent to the FC layer for final fusion, where the discrimination and 

classification are achieved by the Softmax function.  

In the adversarial process of CDGAN, DDN is always expected to identify the samples generated by CGN from the input 

samples and place them in class 1T + , while the goal of CGN is to continuously fit the generated samples to approximate 

the true sample distribution, conforming to the former class b, in order to fight against DDN. In this process, the objective 

function of CDGAN is as follows: 
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Among them, 
GL  is the objective function of the generator of CGN, 

DL  is the objective function of the discriminator of 

DDN, and ( )l   denotes the cross-entropy loss function between different labels, and the process uses a total of   samples. 

2.2 Cascaded spatial-spectral attention block 

2.2.1 Spatial attention mechanism. For the input feature map 
w h c 

x , the spatial attention mechanism first feeds it into 

a convolutional layer 
1w c

h

 
W  with a kernel of size w×1 to obtain the spatial embedding information 

1 h c

h

 x  of the 

feature map on the h-th scale, and similarly, the spatial embedding information 
1w c

w

 x  on the w scale will be obtained 

through a convolutional layer 1w c

w

 W  with a size of 1×h. All the convolutional layers described here aggregate spatial 

information on a channel-by-channel layer by c convolutional kernels in a depth-separated manner for HSI. Let 

( )j w jw x x= W  and ( )i h ih x x= W  denote the results of the depthwise convolution (DWConv) operation, the parameters 

i, j denote the coordinate positions in the feature map x. After matrix transformation T  of the two spatial embeddings, the 

embedded spatial information 
1c h

h

 T
x  and 

1c w

w

 T
x  perform matrix multiplication   and then we can obtain the 

spatial correlation matrix h w c

spa

 M  of the input feature map on different channels, and after going through a channel-

by-channel layer of Softmax function to obtain the final spatial attention distribution spa

w h c A : 
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m
a
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                                                                          (2) 

where 
( , )

spa

z i ja  represents the spatial attention value of the feature map at z-th channel with spatial coordinates at ( , )i j , and 

( , )

spa

z i jm  is the corresponding value in spaM . Due to the Softmax function, the sum of each channel is 1. 

2.2.2 Spectral attention mechanism. After the spatial attention distribution is obtained, it will be further used for the 

subsequent spectral attention generation. Analogous to GAP, a global pooling strategy based on the spatial attention 

distribution will be used to fuse the spatial information for the feature maps in this paper, namely: 
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By using the spatial attention distribution spaM  as a weighting factor, the input feature map is weighted to obtain the spectral 

feature vector 
1 ce  . This summation process is maintained for each channel of the feature map. Subsequently, two 

point-by-point convolution layers 
1 c

v

W  and 1 c

u

W  with a kernel of size 1, are used to perform spectral information 

mining respectively. Let ( ) vv e e= W  and ( ) uu e e= W  denote the results of the point-by-point convolutional operation, 

the symbol  denotes the operation process, and in addition the residual connection Res.  is applied on the generated 

feature vector. After matrix multiplication, the spectral correlation matrix spectral c c

spe

M  is fed into the Softmax 

function to obtain the spectral attention mask 
c c

spe

A  of the target, and the value of the coefficients in the mask can be 

calculated as follows: 

1
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where ,

spe

i ja  is the correlation attention coefficient between the i-th band and the j-th band, and ,

spe

i jm  is the corresponding 

value in 
speM .  

3. EXPERIMENTS AND RESULTS 

3.1 Experimental data and related settings 

In order to verify the effectiveness of the proposed method, the UP dataset and the SS dataset are taken for experiments 

and comparisons, where 40 samples of each class in the UP dataset are obtained in a random way for the training of the 

experiments, and 20 samples of each class will be taken randomly for the SS dataset. In this process, overall accuracy 

(OA), average accuracy (AA), and Kappa measures are used to evaluate the performance of the proposed method, and all 

experimental results are obtained by counting the results of 10 independent runs. 

In this experiment, all samples are normalized and a symmetric strategy is used as the padding pattern centered on the 

labeled image element to generate sample data with a spatial size of 9×9 for each dataset, and the full spectral band is 

retained, while the dimension of the input noise vector in CGN is set as 100= . The batch size of the training samples is 

set to 16, both CGN and DDN are optimized by the Adaptive Moment Estimation (Adam) optimizer, with the initial 

learning rate set to 45 10−  and the momentum is 0.9, and the optimization of the model is completed within 300 iterations 

cycles. To verify the effectiveness of the proposed method, Support Vector Machine (SVM)9 based on Extended 

Morphological Profiles (EMP) method, Hybrid Spectral Convolutional Neural Network (HybridSN) method10, 3D 

Convolutional GAN (3DGAN) method based on 3D convolution11, Semi-Supervised GAN (SSGAN) method12, and 

Capsule GAN (CapsGAN) method13 based on capsule network are tested against each other. In these methods, the 

parameters of SVM are tuned manually. To compare with the presented method, the parameters related to HybridSN are 

set according to Reference10, while the input of 3DGAN is set to 64×64, and the spacial size of both SSGAN and CapsGAN 

is set to 9×9, and their parameters are set according to References12,13. 

3.2 Results and analysis 

The metrics of the two sets of experimental results are shown in Tables 1 and 2, and the corresponding classification 

visualization results are shown in Figure 2. Specifically, for the UP dataset, the CDGAN method proposed in this paper 

achieves the best values for OA and Kappa coefficients. The best result for the AA metric is achieved by the SSGAN 

method, while the AA value of CDGAN achieves the second-best result. For the GAN-based methods, the increase of fitted 

samples effectively alleviates the problem of overfitting and achieves good results in the categories of grass and metal 

slabs. Compared with other GAN-based methods, the method proposed in this paper can identify tarmac category better. 

For the SS dataset, CDGAN achieves the best results on all three metrics for the SS dataset, improving by 12.68%, 7.51%, 

3.24%, 6.11%, 2.76%, and 0.66% respectively on the OA metric compared to the other methods and obtaining the best 

result of 98.50% on the AA metric, with the Kappa coefficient at least 0.65% ahead of the other methods. Furthermore, it 
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can be seen from the table that the method proposed in this article leads the other methods in terms of correct identification 

on most categories. In summary, the CDGAN method proposed in this paper achieves the best results on two publicly 

available datasets, validating the effectiveness of the method.  

 

Figure 2. Visualization and classification maps of different approaches for the UP and SS datasets. Upper line is the UP dataset, lower 

line is the SS dataset. (a) HSI, (b) GT, (c) SVM, (d) HybridSN, (e) 3DGAN, (f) SSGAN, (g) CapsGAN, (h) CDGAN. 

Table 1. Classification results of different approaches on the UP dataset. 

Category SVM HybridSN 3DGAN SSGAN CapsGAN CDGAN 

Asphalt 77.22 56.41 88.26 99.84 96.29 97.23 

Meadows 73.81 77.21 95.75 98.93 98.96 99.53 

Gravel 24.42 16.58 83.33 95.67 92.98 94.35 

Trees 99.87 96.86 86.72 97.95 98.21 98.05 

Painted metal sheets 96.51 78.58 86.51 97.04 99.37 99.54 

Bare soil 93.96 67.4 97.8 98.96 99.96 99.32 

Bitumen 16.14 10.58 94.41 59.14 99.48 96.62 

Self-blocking bricks 60.32 57.55 90.64 88.16 80.89 90.17 

Shadows 99.89 99.88 79.97 96.74 98.92 97.32 

OA (%) 74.7 73.02 92.6 96.13 96.58 97.81 

AA (%) 68.4 69.61 87.46 96.03 93.05 95.92 

Kappa (%) 72.62 71.39 90.11 94.9 95.45 97.09 

Table 2. Classification results of different approaches on the SS dataset. 

Category SVM HybridSN 3DGAN SSGAN CapsGAN CDGAN 

Brocoli_green_weeds_1 98.63 100 98.95 69.96 99.95 99.93 

Brocoli_green_weeds_2 97.91 99.88 95.02 99.77 98.99 99.86 

Fallow 88.45 93.22 98.58 98.94 99.13 99.28 

 

b) GT c) SV M

(O A=74.70%)

d) HybridSN

(O A=73.02%)

e) 3DGAN

(O A=92.60%)

f) SSGAN

(O A=96.13%)

g) CapsGAN

(O A=96.58%)

h) CD GAN

(O A=97.81%)
a) HSI

b) GT c) SV M
(O A=84.18%)

d) HybridSN
(O A=89.35%)

e) 3DGAN
(O A=90.75%)

f) SSGAN
(O A=94.10%)

g) CapsGAN
(O A=96.27%)

h) CD GAN     
(O A=96.86%)

a) HSI

SS dataset

UP dataset
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Category SVM HybridSN 3DGAN SSGAN CapsGAN CDGAN 

Fallow_rough_plow 97.52 97.42 62.79 99.89 99.24 99.64 

Fallow_smooth 92.55 93.5 65.1 87.07 98.24 99.88 

Stubble 99.42 99.54 92.36 99.54 99.89 99.75 

Celery 95.55 96.5 98.29 98.72 98.97 99.83 

Grapes_untrained 64.47 91.22 91.27 94.02 91.54 94.41 

Soil_vinyard_develop 91.11 99.93 97.02 99.64 99.22 99.72 

Corn_senesced_green_weeds 87.3 95.32 88.6 94.01 99.67 98.66 

Lettuce_romaine_4wk 78.28 91.85 97.84 99.65 100 100 

Lettuce_romaine_5wk 92.56 94.94 98.02 99.44 99.67 99.71 

Lettuce_romaine_6wk 90.44 98.36 78.94 99.81 98.29 99.89 

Lettuce_romaine_7wk 94.99 96.86 93.88 76.86 98.21 97.41 

Vinyard_untrained 77.15 61.65 85.81 91.4 87.5 87.34 

Vinyard_vertical_trellis 98.69 100 95.26 98.87 100 100 

OA (%) 84.18 89.35 90.75 94.1 96.27 96.86 

AA (%) 86.65 89.73 88.19 91.2 98.15 98.5 

Kappa (%) 82.21 88.21 89.7 93.42 95.85 96.5 

4. CONCLUSION 

In this paper, a GAN framework-based HSI classification approach is proposed for exploring HSI classification methods 

with small samples. Firstly, the noise vector is fed into the generator of CGN for generating the HSI samples. In order to 

increase the authenticity of the samples, the label vector is fed into CGN in parallel, and the spatial reconstruction of the 

samples is completed by coupled upsampling layers with shared parameters during sample generation, while the effective 

mapping of the noise is enhanced by learning of the label information through the deconvolution layers to improve the 

sample quality. In DDN, the true/false HSI samples learn spatial and spectral features separately in a dual-channel style, 

during which the spatial-spectral cascaded attention mechanism effectively facilitates the feature mining. During the 

competitive iteration in CDGAN, the task of classifying HSI under small samples is accomplished. The experimental 

results demonstrate the effectiveness of the proposed method, which has better classification results compared with the 

other five algorithms in this paper. 
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