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ABSTRACT 

Natural disasters often inflict significant damage on communication infrastructure, which plays a crucial role in emergency 

response operations. With technological advancements, UAV communication network (UAVCN) is now capable of 

providing sustained communication services. However, existing research typically focuses solely on the objective of 

maximizing communication coverage, while traditional genetic algorithms are susceptible to converging on local optima. 

Therefore, this study establishes a multi-objective planning model and employs an improved genetic algorithm for its 

solution. Initially, a two-stage stochastic planning method is proposed. The first stage determines the optimal layout of 

UAVCN to maximize communication coverage and throughput, while the second stage generates the optimal paths for 

UAVCN to minimize rescue time and energy consumption. In solving the two-stage model, an improved genetic algorithm 

(IGA) is adopted, which combines global search capabilities with rapid convergence. Finally, the 2017 Jiuzhaigou 

earthquake is selected as a case study to construct and simulate the two-stage model, thereby verifying the effectiveness 

and feasibility of the model and algorithm, and to obtain the optimal planning scheme. 

Keywords: Earthquake, communication, UAV, stochastic programming, genetic algorithm 

1. INTRODUCTION 

Globally, frequent occurrences of natural disasters such as earthquakes, tsunamis, hurricanes, floods, and landslides often 

result in substantial human casualties and economic losses1. Consequently, communication systems have experienced 

significant impacts in numerous natural disasters, leading to extensive and prolonged communication outages in affected 

areas, which severely impede information transmission and emergency response reliant on communication systems2,3. 

Therefore, in the context of natural disasters, the rapid restoration of communication networks is a critical focus of this 

study. Traditional methods of rapidly restoring communication networks involve ground emergency communication 

platforms. They have limitations such as low flexibility and significant dependence on terrain and road conditions, making 

it difficult to reach target areas promptly4. In recent years, UAV communication network (UAVCN) has garnered 

considerable attention from researchers, equipment manufacturers, and communication service providers due to its 

convenient, flexible, and rapid deployment capabilities and remote data collection functions5,6. In emergency rescue, 

UAVCN can swiftly restore communication networks in affected areas7. 

From the discussion above, it is evident that while the application of UAVs in emergency rescue is widespread and 

extensively researched, there is limited research on UAVCN for restoring communication networks in disaster areas. 

Additionally, few studies simultaneously consider aspects such as area coverage, system throughput, flight time, and 

energy consumption. Although there is significant research on improving traditional genetic algorithms, they are not 

entirely applicable to the model in this paper. Therefore, this study proposes a two-stage stochastic planning method to 

identify the optimal layout and path of UAVCN. The contributions of the paper are summarized as follows: 

(1) The layout and path planning model for UAVCN is improved by setting multiple objectives to more comprehensively 

meet the characteristics of communication services required by disaster-affected areas under real-world conditions. 

(2) The improved genetic algorithm (IGA) is proposed, which overcome the limitations of local optima, resulting in 

improved algorithmic precision, reduced computation time, and lower costs. 
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2. LITERATURE REVIEW 

UAV technology plays an increasingly vital role in emergency rescue operations, capable of executing a range of complex 

tasks including the reconstruction of 3D maps8, emergency surveying9, and environmental assessment10. Following a 

disaster, rescue personnel are often unable to rapidly reach the affected sites due to complex terrain and damaged roads, 

making the layout and path planning of UAVs crucial11. Early research primarily focused on enhancing the performance 

of individual UAV. However, given the limited monitoring and coverage capabilities of a single UAV, the focus in 

emergency rescue has shifted towards how to coordinate multiple UAVs. Currently, research on UAV layout and path 

planning in rescue operations is gradually evolving towards multi-UAV collaboration to enhance the comprehensiveness 

and efficacy of rescue missions. 

In addressing task allocation and path planning issues, decades of exploration have yielded various solutions12. Existing 

task allocation techniques can be broadly categorized into traditional mathematical programming and heuristic-based 

algorithms13. For path planning, strategies such as graph-based methods14, random sampling search algorithms15, node-

based optimal search16, artificial potential fields17, and biomimetic evolutionary algorithms18 have been developed. Each 

method has its focus, such as constructing robust path graphs, sampling between start and end points to generate paths, 

using heuristic functions for effective search, simulating interactions between objects for planning, and mimicking 

biological evolution to optimize paths. 

In summary, joint research on UAVs layout and path planning is scarce. Moreover, as path planning is an NP-hard problem, 

heuristic algorithms can be used for effective solutions, but these algorithms have drawbacks such as slow convergence 

and susceptibility to local optima. To date, the layout and path planning problem for UAVs remains an open area of 

research. Therefore, this paper proposes a comprehensive and efficient solution by conducting stochastic planning for both 

the layout and path planning stages of UAVCN and employing an improved genetic algorithm (IGA) for solving. 

3. PROBLEM DESCRIPTION 

The path problem of drones in the second stage can be described as follows: For a directed complete graph 𝐺 = (𝐿𝑒 , 𝐸), 

where 𝐿𝑒  is the set of demand points, node 0  represents the drone dispatch center, and each edge 𝐸 =
{𝑗, 𝑚|𝑗, 𝑚 ∈ 𝐿𝑒 ∩ 𝑗 ≠ 𝑚} corresponds to a non-negative distance 𝑑𝑗𝑚, the communication demand time for each demand 

point 𝑗 ∈ 𝐿𝑒 is fixed. The UAV dispatch center 0 has a group of UAVs 𝑈 ∈ {1,2, … , 𝑢} each with a maximum energy 

of 𝐸𝑚𝑎𝑥. After receiving dispatch orders, the UAVs depart from the dispatch center to the demand points, staying for a 

fixed time before moving on to service subsequent demand points. 

3.1 Layout model 

3.1.1 Notations. The notations and symbols of the model in this section are described in Table 1. 

Table 1. Meaning of the notations. 

Parameters Meaning 

𝑈 Set of UAVs, 𝑈 ∈ {1, 2, … , 𝑢} 

𝑢 Number of UAVs 

𝐿 Set of disaster points, 𝐿 ∈ {1, 2, … , 𝑙} 

𝑙 Number of disaster points 

(𝑥𝑖 , 𝑦𝑖 , 𝐻𝑖) Three-dimensional coordinates of the UAV 

(𝑥𝑗 , 𝑦𝑗 , 0) Three-dimensional coordinates of the disaster point 

𝑑𝑖𝑗  Distance between the UAV 𝑖 and the disaster point 𝑗, km 

𝑑𝑚𝑎𝑥  Maximum communication range of the UAV, km 

𝐻𝑚𝑎𝑥 Hover height of the UAV, km 
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Parameters Meaning 

𝐶𝑖𝑗 Throughput function 

𝛾 Communication bandwidth, Hz 

𝑆𝑁𝑅𝑖𝑗 Transmission signal-to-noise ratio, dB 

𝑞0 Small-scale frailty coefficient of communication, dB 

𝛽𝑖𝑗 Path loss criterion 

𝛼2 White noise power, dB 

𝑣𝑚𝑎𝑥  Velocity of light, km/s 

𝑔 Carrier frequency, GHz 

𝜌 Path loss index 

𝜔𝑖𝑚 When 𝜔𝑖𝑚 = 1, it means the UAV 𝑖 is hovering over the disaster point 𝑚, otherwise 𝜔𝑖𝑚 = 0 

𝜎𝑖𝑗 When 𝜎𝑖𝑗 = 1, it means that the UAV 𝑖 serves disaster point 𝑗, otherwise 𝜎𝑖𝑗 = 0 

3.1.2 Model foundation. The layout model employs two decision variables: 𝜔𝑖𝑚 and 𝜎𝑖𝑗, the specific meanings of which 

are provided in Table 1. The model takes into account the impacts of system throughput and communication coverage. 

The objective function aims to maximize system throughput and communication coverage, as expressed in equation (1). 

𝑚𝑎𝑥 𝑌1 = {
𝑌11/(1 − 𝑌12), 𝑌12 ≠ 1

𝑌11, 𝑌12 = 1
                               (1) 

𝑌11 = ∑ ∑ ∑ 𝜔𝑖𝑚𝜎𝑖𝑗𝐶𝑖𝑗𝑚∈𝐿𝑗∈𝐿𝑖∈𝑈                                 (2) 

𝑌12 = ∑ ∑ 𝜎𝑖𝑗/𝑙𝑗∈𝐿𝑖∈𝑈                                       (3) 

𝐶𝑖𝑗 = 𝛾𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅𝑖𝑗)                                    (4) 

𝑆𝑁𝑅𝑖𝑗 = 𝑞0
2𝛽𝑖𝑗/𝛼2                                      (5) 

𝛽𝑖𝑗 = (𝑣𝑚𝑎𝑥/4𝜋𝑔)2/𝑑𝑖𝑗
𝜌/2

                                   (6) 

𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

+ 𝐻𝑖
2                             (7) 

Equation (1) represents the composite optimization objective of maximizing the communication system’s throughput as 

well as maximizing the coverage rate of UAVs; Equation (2) denotes the communication system throughput, defined by 

the transmission rate between UAVs and disaster points; Equation (3) defines the UAV coverage rate; Equation (4), based 

on Shannon’s formula, denotes the transmission rate between UAVs and disaster points; Equations (5) and (6) represent 

the signal-to-noise ratio (SNR) of the transmission between UAVs and disaster points. 

The constraints of the layout model are as shown in equations (8)-(16). 

∑ ∑ 𝜔𝑖𝑚𝜎𝑖𝑗 ≥ 1, ∀𝑖 ∈ 𝑈𝑚∈𝐿𝑗∈𝐿                                (8) 

∑ 𝜎𝑖𝑗 ≤ 1, ∀𝑗 ∈ 𝐿𝑖∈𝑈                                    (9) 

∑ 𝜔𝑖𝑗 ≤ 1, ∀𝑚 ∈ 𝐿𝑖∈𝑈                                  (10) 

𝜎𝑖𝑗𝑑𝑖𝑗 ≤ 𝑑𝑚𝑎𝑥 , ∀𝑖 ∈ 𝑈, ∀𝑗 ∈ 𝐿                              (11) 

𝜔𝑖𝑗𝑑𝑖𝑗 ≤ 𝑑𝑚𝑎𝑥 , ∀𝑖 ∈ 𝑈, ∀𝑗 ∈ 𝐿                              (12) 

𝜎𝑖𝑗𝐶𝑖𝑗 ≤ 𝑐, ∀𝑖 ∈ 𝑈, ∀𝑗 ∈ 𝐿                               (13) 
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∑ ∑ 𝜎𝑖𝑗𝐶𝑖𝑗 ≤ 𝐶𝑚𝑎𝑥𝑗∈𝐿𝑖∈𝑈 , ∀𝑖 ∈ 𝑈, ∀𝑗 ∈ 𝐿                         (14) 

𝜔𝑖𝑚 ∈ {0,1}, ∀𝑖 ∈ 𝑈, ∀𝑗 ∈ 𝐿                              (15) 

𝜎𝑖𝑗 ∈ {0,1}, ∀𝑖 ∈ 𝑈, ∀𝑗 ∈ 𝐿                              (16) 

Equation (8) indicates that any given UAV must serve at least one demand point; Equations (9) and (10) state that any 

disaster point may be served by no more than one UAV; Equations (11) and (12) outline the coverage constraints of the 

UAVCN; Equation (13) ensures that the throughput at any disaster point must exceed the minimum throughput required 

to maintain communication; Equation (14) asserts that the total throughput served by a UAV at demand points does not 

exceed the UAV’s maximum communication capacity; Equations (15) and (16) specify the value ranges for the decision 

variables. 

3.2 Path planning model 

3.2.1 Notations. The notations and symbols of the model in this section are described in Table 2. 

Table 2. Meaning of the notations. 

Parameters Meaning 

𝑈 Set of UAVs, 𝑈 ∈ {1,2, … , 𝑢} 

𝑢 Number of UAVs 

𝐿𝑒 Set of demand points, 𝐿𝑒 ∈ {1,2, … , 𝑙𝑒} 

𝑙𝑒 Number of demand points 

(𝑥𝑗 , 𝑦𝑖) Coordinates of demand points 

𝑑𝑗𝑚 Distance between the demand points 𝑗 and demand points 𝑚, km 

𝑇𝑖𝑗  Time for UAV 𝑖 to service a demand point 𝑗, min 

𝑇𝑙𝑗𝑚 Time of the UAV from demand point 𝑗 to demand point 𝑚, min 

𝑇𝑡𝑗 Time for UAV to rescue a demand point 𝑗, min 

𝑣 Flying speed of UAV, m/s 

𝑣0 Hover speed of UAV, m/s 

𝑃0 Hover power of UAV, W 

𝑃1 Flying power of UAV, W 

𝑃𝑝 UAV blade power, W 

𝑃𝑞  UAV induced power, W 

𝑉𝑡𝑖𝑝 UAV tip speed, m/s 

𝐸𝑚𝑎𝑥 Maximum power of UAV, mAh 

𝜀𝑖𝑗 When 𝜀𝑖𝑗 = 1, it means the UAV 𝑖 provides communication to the demand point 𝑗, otherwise 𝜀𝑖𝑗 = 0 

𝜑𝑖𝑗𝑚 When 𝜑𝑖𝑗𝑚 = 1, it means the UAV 𝑖 provides communication to demand point 𝑗 and then to demand 

point 𝑚, otherwise  𝜑𝑖𝑗𝑚 = 0 

3.2.2 Model foundation. The path planning model employs two decision variables: 𝜀𝑖𝑗 and 𝜑𝑖𝑗𝑚, with specific meanings 

as provided in the table. The model accounts for the impact of rescue time and UAV energy consumption. The objective 

function is to minimize rescue time and UAV energy consumption, as shown in equation (17). 
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𝑚𝑎𝑥 𝑌2 = 𝑌21 × 𝑌22                                        (17) 

𝑌21 = 𝑚𝑎𝑥𝑖∈𝑈(∑ ∑ (𝜀𝑖𝑗𝑇𝑡𝑗 + 𝜑𝑖𝑗𝑚𝑇𝑙𝑗𝑚)𝑚∈𝐿𝑒𝑗∈𝐿𝑒
)                           (18) 

𝑌22 = ∑ (∑ ∑ 𝜑𝑖𝑗𝑚𝑃1𝑇𝑙𝑗𝑚𝑚∈𝐿𝑒𝑗∈𝐿𝑒
+ ∑ 𝜀𝑖𝑗𝑃0𝑇𝑡𝑗𝑗∈𝐿𝑒

)𝑖∈𝑈                          (19) 

𝑇𝑙𝑗𝑚 = 𝑑𝑗𝑚/𝑣                                          (20) 

𝑑𝑗𝑚 = √(𝑥𝑗 − 𝑥𝑚)
2

+ (𝑦𝑗 − 𝑦𝑚)
2
                                  (21) 

𝑃1 = 𝑃𝑝(1 + 3𝑣2/𝑉𝑡𝑖𝑝
2 ) + 𝑃𝑞√√1 + 𝑣4/4𝑣0

4 − 𝑣2/2𝑣0
2                         (22) 

Equation (17) represents a composite objective function that minimizes rescue time and total energy consumption; 

Equation (18) denotes the longest rescue time among all UAVs; Equation (19) signifies the total energy consumption of 

all UAVs; Equation (20) defines the flight time of a UAV between two demand points; Equation (21) specifies the flight 

distance between two demand points; Equation (22) represents the power of a UAV during flight. 

The constraints of the layout model are as shown in equations (23) and (24). 

∑ ∑ 𝜀𝑖𝑗𝑗∈𝐿𝑒𝑖∈𝑈 = 𝑙𝑒                                        (23) 

∑ 𝜀𝑖𝑗 = 1, ∀𝑗 ∈ 𝐿𝑒𝑖∈𝑈                                       (24) 

∑ 𝜀𝑖𝑗 ≥ 1, ∀𝑖 ∈ 𝑈𝑗∈𝐿𝑒
                                      (25) 

∑ ∑ 𝜀𝑖𝑗𝜀𝑖𝑚𝜑𝑖𝑗𝑚 ≥ 1𝑚∈𝐿𝑒𝑗∈𝐿𝑒
                                   (26) 

∑ 𝜑𝑖𝑗𝑚 = ∑ 𝜑𝑖𝑚𝑗𝑗∈𝐿𝑒𝑗∈𝐿𝑒
, ∀𝑖 ∈ 𝑈, ∀𝑗 ∈ 𝐿𝑒                            (27) 

∑ ∑ 𝜑𝑖𝑗𝑚 ≤ |𝐾| − 1𝑚∈𝐾𝑗∈𝐾 , ∀𝐾 ∈ 𝐿𝑒 , 2 ≤ |𝐾| ≤ 𝑙𝑒 − 1, ∀𝑖 ∈ 𝑈                 (28) 

∑ ∑ 𝜑𝑖𝑗𝑚𝑃1𝑇𝑙𝑗𝑚𝑚∈𝐿𝑒𝑗∈𝐿𝑒
+ ∑ 𝜀𝑖𝑗𝑃0𝑇𝑡𝑗𝑗∈𝐿𝑒

≤ 𝐸𝑚𝑎𝑥 , ∀𝑖 ∈ 𝑈                  (29) 

𝜑𝑖𝑗𝑚 = {0,1}, ∀𝑖 ∈ 𝑈, ∀𝑗 ∈ 𝐿𝑒 , ∀𝑚 ∈ 𝐿𝑒                         (30) 

Equation (23) ensures that UAVs provide emergency communication rescue for all points requiring service; Equation (24) 

states that a demand point can only be assisted by one UAV; Equation (25) mandates that a UAV must assist at least one 

demand point; Equation (26) details the scenario where a UAV provides assistance to point 𝑗 before assisting point 𝑚; 

Equation (27) guarantees the continuity of the path; Equation (28) is designed to prevent sub-loop formation in the path; 

Equation (29) ensures that the energy consumption of a UAV does not exceed its maximum capacity; Equation (30) 

pertains to the value range of the decision variables. 

4. ALGORITHM DESCRIPTION 

The improved genetic algorithm possesses parallel search characteristics, enabling the maintenance of parallel optimization 

of the population. The specific operational steps of the improved genetic algorithm are as follows: 

Step 1. Set control parameters: population size 𝑀, initial temperature 𝑇, cooling coefficient 𝑣, final temperature 𝑇′. 

Step 2. Population initialization: initialize the population 𝑃 through the Tent chaos algorithm. 

Step 3. Calculate fitness: determine the fitness values of each individual in the population. 

Step 4. Set iteration variable: iteration variable 𝑞 = 0. 

Step 5. Selection operation: select individuals to enter the new population according to the designed selection method. 

Step 6. Crossover operation: perform crossover operations on two selected individuals with crossover probability 𝑃𝑐 

according to the adaptive crossover probability formula. 

Step 7. Mutation operation: perform mutation operations on two selected individuals with mutation probability 𝑃𝑚 

according to the adaptive mutation probability formula. 
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Step 8. Simulated annealing operation: perform simulated annealing on the newly mutated individuals, calculate the new 

individual’s fitness value. 

Step 9. Iteration judgment: If 𝑞 < 𝑞𝑚𝑎𝑥, go back to Step 5; otherwise, proceed to Step 10. 

Step 10. Check if the algorithm satisfies the termination condition; if satisfied, the algorithm stops execution; otherwise, 

perform the cooling operation and go back to Step 4. 

5. CASE STUDY 

5.1 Data preparation 

On August 8, 2017, Jiuzhaigou County in Sichuan Province was struck by a magnitude 7.0 earthquake, causing severe 

damage to infrastructure, with 17 townships experiencing power outages, multiple communication facilities destroyed, and 

hundreds of base stations incapacitated. This study takes the “8·8” Jiuzhaigou earthquake as the backdrop and selects 103 

administrative villages in Jiuzhaigou County as the research subjects. The latitude and longitude of each disaster point are 

obtained through Baidu Maps and converted into planar XY coordinates (blue points in Figure 1, with a new reference 

point as the coordinate origin.  

5.2 Results analysis 

5.2.1 Layout analysis. Solving with the objective function of maximizing system throughput and coverage, the optimal 

objective value obtained using the combined method of the K-means algorithm and genetic algorithm is 3410, 𝑌1 = 3410, 

and the optimal objective value obtained using the combined method of the K-means algorithm and the improved genetic 

algorithm is 𝑌1 = 4294, as shown in Figures 1 and 2. At the same time, an iterative comparison was made between the 

Genetic Algorithm (GA) and the Improved Genetic Algorithm (IGA) to solve the layout model, as shown in Figure 3. 

   

Figure 1. Layout result. Figure 2. Layout results (improved algorithms). Figure 3. Iterative comparison. 

5.2.2 Path planning analysis. In this subsection, we use four UAVs as an example to explore the optimal path and the 

effectiveness of the algorithm. The layout results obtained by combining the K-means algorithm and the improved genetic 

algorithm are used as demand points. The objective function is to minimize rescue time and energy consumption. The 

optimal objective value obtained using the genetic algorithm is 91697, 𝑌2 = 91697. The optimal objective value obtained 

using the improved genetic algorithm is 82797, 𝑌2 = 82797, as shown in Figures 4 and 5. Similarly, the iterative process 

of Genetic Algorithm (GA) and Improved Genetic Algorithm (IGA) in the solution path planning model is compared, as 

shown in Figure 6. 

  
 

Figure 4. Path planning results. Figures 5. Path planning results (improved algorithms). Figure 6. Iterative comparison. 
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5.2.3 Algorithm analysis. From the algorithm comparison in Figures 3 and 6, it is observed that in the initial stage, the 

Improved Genetic Algorithm (IGA) exhibits a faster rate of decline compared to the Genetic Algorithm (GA). In the steady 

state phase, with an increase in the number of iterations, IGA’s objective function value is lower and tends to stabilize, 

indicating that IGA outperforms GA in local search and fine-tuning. 

6. CONCLUSIONS 

Especially in the critical period following a disaster, the damage to traditional communication infrastructure often severely 

hinders rescue efforts. In response to these challenges, this study proposes a two-stage stochastic planning method to 

optimize the layout and path planning of UAVCN for the rapid restoration of post-disaster communication networks. The 

first stage focuses on the layout of UAVCN, aiming to maximize system throughput and the coverage area of the disaster-

affected region, ensuring that key areas can quickly obtain necessary communication services. In the second stage, after 

obtaining the optimal layout, the study investigates the flight path planning of UAVCN to reduce the total time and energy 

consumption of task execution, optimizing the operational efficiency of the UAV fleet. 

To address the issues of traditional genetic algorithms being prone to local optima and inefficient in solving complex 

optimization problems, this study proposes an improved genetic algorithm. The new algorithm significantly enhances 

performance by introducing more refined population initialization strategies, adaptive crossover and mutation mechanisms, 

and multi-objective optimization capabilities. A series of simulation experiments demonstrate the superiority of the 

improved algorithm. 
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