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ABSTRACT 

To address the issues of low resolution and blurry edges in infrared images of substation scenes, a super-resolution 

reconstruction method based on a dual-attention guidance mechanism is proposed. Specifically, during the deep feature 

extraction of infrared images, the spatial and channel transformer group (SCTG) is proposed to extract global spatial 

similarity features, fully utilizing the long-range dependencies of non-local pixels and enhancing detailed information. 

Subsequently, a Spatial Frequency Information Fusion Module (SFIFM) utilizes the extracted high-frequency information, 

reducing artifacts and mosaic effects that occur during the super-resolution process. The overall quality of the reconstructed 

images is improved and the detailed contour information is refined. Finally, ablation and comparative experiments on a 

self-made dataset demonstrate that the proposed method outperforms state-of-the-art methods. 
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1. INTRODUCTION 

Infrared imaging technology1 can convert invisible thermal radiation signals into images forms and achieve non-touchable 

temperature measurement. Considering the strong information expression capability and the long effective range, high 

interference resistance in the images Despite the rapid advancements in infrared imaging technology, infrared images still 

suffer from low spatial resolution, lack of detailed textures, and blurred targets due to the physical limitations of sensors. 

Super-resolution reconstruction2 is a significant field in image processing, aimed at converting low-resolution inputs into 

high-resolution images and enhancing image details. With the continuous advancement of deep learning, super-resolution 

technology has also been evolving. However, challenges still remain in reconstructing and enhancing the details when 

applied for infrared images. To address this issue, numerous studies have integrated self-attention mechanisms3 to capture 

global information. SASRGAN4 and AFiLM5 were proposed to utilize self-attention mechanisms to strengthen spatial 

dependencies, thereby improving the structural quality of super-resolution. Nevertheless, many models often overlook 

multi-scale detail extraction, resulting in incomplete global information capture. The SCTANet6 model incorporated a 

mixed complementary spatial attention mechanism during the feature extraction process, aiding pixel-level detail 

reconstruction and reducing computational complexity, but neglects depth and high-frequency information. In contrast, 

the MAGSR7 employed a multi-scale hybrid attention mechanism to extract richer multi-scale depth and high-frequency 

details, resulting in clearer reconstructed infrared images. Despite these advancements, the global features are still ignored, 

which may restrict the potential for detailed information reconstruction. By combining spatial self-attention mechanisms 

along channel and spatial frequency dimensions, global spatial similarity features and long-range dependencies of infrared 

images can be fully leveraged. Thus, in this way, detail information in infrared images could be reconstructed, thereby 

improving the quality of the reconstructed images. 

The proposed study introduces a super-resolution reconstruction network for infrared images based on dual attention 

guidance. The main research content of the study is as follows: 

1) A Spatial and Channel Transformer Group (SCTG) is constructed to capture global information in both spatial and  

 channel dimensions. The design enables the model to identify and enhance important spatial features while effectively  

refining and utilizing inter-channel global information.  
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2) A Spatial Frequency Domain Information Fusion Module (SFIFM) based on Fast Fourier Transform (FFT)8 is proposed 

to extract high-frequency information from infrared images. The receptive field is extended in the frequency domain to 

enhance high-frequency details, reduce artifacts and obtain clearer contour edges. 

c) Through the combination of the developed SCTG and SFIFM modules, a rational network framework is constructed, 

which can improve the resolution through the processing of infrared images, and the experiments in the dataset prove the 

advancement of constructing a network. 

2. PROPOSED MODEL 

The structure of the super-resolution reconstruction network for infrared images based on dual-attention guidance is 

illustrated in Figure 1. The network consists of three main components: a Shallow Feature Extraction Module (SFEM), a 

Deep Feature Extraction Module (DFEM), and a High-Quality Reconstruction Module (HQRM). The SFEM employs a 

3×3 convolutional layer to extract shallow features from the input low-quality infrared image. The DFEM comprises five 

Dual Attention Guided Transformer Blocks (DATB) and one Spatial Frequency Domain Information Fusion Module 

(SFIFM). This module enhances the deeper features of the image, compensating for the loss of high-frequency detail 

information during the infrared image reconstruction process. The HQRM includes a Pixel Shuffle9 and two 3×3 

convolution blocks. By integrating the extracted shallow features with the deeper features using residual connections, the 

HQRM effectively fuses information from both feature levels, resulting in a high-quality infrared image after the final 

super-resolution reconstruction. 

To address the issue of insufficient detail information provided by the self-attention mechanism, the study incorporates a 

global spatial and channel self-attention mechanism module. The module simultaneously applies spatial and channel self-

attention mechanisms during the extraction of deep features, effectively refining and utilizing global information between 

channels to achieve more precise and efficient super-resolution reconstruction. Additionally, a spatial frequency domain 

information fusion module is integrated to further enhance network performance. The fusion module improves high-

frequency details of infrared images, resulting in superior quality of reconstructed image contours and edges. The network 

thus enhances both the resolution and clarity of infrared images, providing high-quality data for subsequent bird target 

detection technology.  

 

Figure 1. The structure of the super-resolution reconstruction network for infrared images based on dual-attention guidance. 

2.1 Shallow feature extraction module (SFEM) 

The main task of SFEM is to extract initial shallow features on the input low-quality infrared image. The shallow features 

0

H W CF  
 are extracted from the input image 

H W C

LQI  

, where I  represents the infrared image, 
LQ

 represents the low-

quality image, H and W  represent the height and width, and C  is the number of channels, set to 3 in this study. The 

extraction process follows the formula: 

 ( )0 3 3 LQF Conv I=                                                                (1) 
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Where 
( )3 3Conv  

 denotes the 3×3 convolution. 

2.2 Deep feature extraction module (DFEM) 

The DFEM consists of five DATB and one SFIFM. Each DATB includes a SCTG with residual connections and one 

SFIFM. By integrating the SFIFM after each SCTG, the model’s ability to capture high-frequency details and reconstruct 

image content is significantly enhanced, improving the model’s understanding of image details. The overall process of 

DATB can be represented as: 

 ( )( )X SCTG LayerNorm X X= +                                             (2) 

 ( )( )X SFIFM LayerNorm X X= +                                            (3) 

Where X  is the input image feature and 
LayerNorm

 is the normalization layer. By introducing the SFIFM after each 

layer of DATB, the model's ability to capture high-frequency and reconstruct image details are significantly enhanced. 

This structural design enables the network to effectively reconstruct image content at a deeper level, providing, robust 

support for high-quality image reconstruction and feature extraction. 

2.1.1 Spatial and channel transformer group (SCTG). Existing Transformer-based methods focus only on extracting spatial 

features and ignore the global information in the channel dimension. To alleviate this problem, the Spatial and Channel 

Transformer Group (SCTG) is constructed to capture global information in both the spatial and channel dimensions, as 

shown in Figure 1. 

SCTG is mainly composed of GSSAM and GCSAM. After the layer normalization operation, the input feature 
H W CF R    is obtained, and a segmentation operation with a window size of M  is performed to segment the feature F  

in the spatial dimension. The input feature is segmented into n  chunks 
 1 2, ,..., nF F F

 of size 
2/HW M  and non-

overlapping, where 
M M C

iF R  
, and each chunk iF

 is fed into the GSSAM to obtain global similarity information in the 

spatial dimension. The global spatial feature output 
H W C

GSSAMF  
, is then reorganized into windows and fed into 

GCSAM to capture global information in the channel dimension. The whole process can be defined as: 

  ( ) , 1,...iF WindowPartition F i n= =                                              (4) 

 ( )( ) , 1,...,GSSAM iF WindowReverse GSSAM F i n= =                                     (5) 

 ( )GCSAM GSSAMF GCSAM F=                                                      (6) 

The main processes of GSSAM and GCSAM are as follows: 

a) Global Spatial Self-Attention Module (GSSAM) 

As shown in Fig. 1, each non-overlapping chunk after the window partitioning operation is first reshaped, followed by 

three 1 × 1 convolutions to obtain the query matrix 
Q

, the key matrix K , and the value matrix V , where 

( )
2M CQ K V 、 、

 respectively. The global spatial information matrix within a localized window can be computed by 

the self-attention mechanism: 

 ( ) ( ), , /TAttention Q K V Softmax QK d P V= +                                         (7) 

where P  is the positional encoding that splits the attention into N  heads to learn the separate attention matrices, 

C
d

N
=

 , 

in a parallel fashion. The results then undergo a 1×1 convolution and reshaping operation to obtain the output features of 

the 
( ) , 1,...,GSSAM

i iF GSSAM F i n= =
. 

b) Global Channel Self-Attention Module (GCSAM) 
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After GSSAM extracts the global spatial features, GCSAM further capture more global features in the channel dimension 

by weighting the extracted spatial features. As shown in Fig. 1, given the input features 
H W C

GSSAMF  
 from GSSAM, a 

reshaping and linear projection operation is first performed on the query matrix 
Q

, the key matrix K , and the value matrix 

V , where 
( )

2M CQ K V 、 、
. This is followed by a reshaping operation on 

Q
 and V  to obtain 

( ), C HWQ V 
. A 

reshaping and transposition operation is then performed on the key matrix K  to obtain 
( )

T
HW CK 

, and the global 

channel attention matrix is computed as follows: 

 ( ) ( )( ), , /
T

Attention Q K V Sofmax Q K V=                                          (8) 

where   is a learnable scaling parameter. Linear projection and reshaping operations are then performed to 

obtain H W C

GCSAMF   . 

2.1.2 Spatial and frequency information fusion module (SFISM). As shown in Figure 1, the Spatial Frequency Domain 

Information Fusion Module (SFIFM) consists of two main branches: the frequency domain branch and the spatial branch. 

The frequency domain branch processes the FFT-transformed image to capture global information, while the spatial branch 

processes image features in the original spatial domain to maintain sensitivity to local details. Ccombining these two 

branches allows the module to comprehensively utilize both global and local information for a more thorough feature 

representation. The input feature T  is fed to both branches to obtain the frequency domain feature frequencyT
 and the spatial 

feature spatialT
, respectively. In the frequency domain branch, the input features are first processed using a 1 ×1 

convolutional layer 1 1Conv   and a 
LeakyReLU

 activation function 
( )L 

, 

 ( )( )1

1 1frequencyT L Conv T=                                                       (9) 

Then the frequency-domain features 
1

frequencyT
 are converted to spatial features 

2

frequencyT
 using the fast Fourier transform 

( )FFT 
, a 1× 1 convolutional layer, an 

LeakyReLU
 activation function and the fast Fourier inverse transform 

( )InvFFT 
, 

 
2 1

1 1( ( ( ( ))))frequency frequencyT InvFFT L Conv FFT T=                                       (10) 

Finally, 
1

frequencyT
 and 

2

frequencyT
are residually concatenated and fed into a 1×1 convolutional layer, which adjusts the number 

of channels to obtain the final features 
final

frequencyT
: 

 
1 2

1 1( )final

frequency frequency frequencyT Conv T T= +                                               (11) 

In the spatial branch, the input features T  are fed to a 1×3 convolutional layer and a 3×1 convolutional layer, 

respectively. The outputs of these convolutional layers are then concatenated and further processed by a 1×1 convolutional 

layer: 

 ( ) ( )( )( )1

1 1 1 3 3 1,spaialT Conv Cat Conv T Conv T  =                                        (12) 

where ( )Cat   denotes a concatenation operation( 1

spaialT and final

spatialT relationship). The features obtained from the frequency 

domain branch final

frequencyT  and the spatial branch final

spatialT  are concatenated, and then fed into a 1×1 convolutional layer to 

adjust the number of channels, resulting in the final spatial-frequency domain fusion features 
fusionT : 

 ( )( )1 1 ,final final

fusion frequency spatialT Conv Cat T T=                                             (13) 
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2.3 High quality reconstruction module (HQRM) 

In the final image reconstruction stage, the High Quality Reconstruction Module (HQRM) integrates the extracted shallow 

and deep feature information using residual connections. This fusion ensures that the shallow detail awareness is preserved 

and the deep semantic information is fully utilized. HQRM consists of a Pixel Shuffle and two 3×3 convolutional blocks. 

The Pixel Shuffle rearranges the elements of the input feature to increase the spatial resolution while maintaining the 

image's integrity and continuity. This process produces the final high-quality, super-resolution infrared image. 

2.4 Loss function 

In this study, the loss function is Charbonnier loss. The model is optimized based on the high-quality image SHQI
 and the 

corresponding ground truth image  generated by the super-resolution reconstruction model. The loss function 

calculation formula is shown below: 

 2

1

1
( ) ( ( , ) )

N
i i

SHQ HQ

i

L M I I
N

  
=

= − +                                          (14) 

where M  denotes the model proposed in this study, N  denotes the number of image pairs in the training dataset, 


 

denotes the model parameters, and   is a constant. 

3. EXPERIMENTAL DETAILS 

3.1 Dataset and experimental setup 

Super-resolution reconstruction experiments were conducted using a self-made infrared image dataset of substation scenes. 

The proposed network is built on the PyTorch deep learning framework. An adaptive optimizer (Adaptive Moment 

Estimation, Adam) was used for model optimization, with an initial learning rate set to 0.0001, and the MultiStepLR 

scheduler was employed to dynamically adjust the learning rate during training. The original resolution of the infrared 

images is 640×512, and the experimental magnification factors were chosen to be 2 and 3. 

3.2 Evaluation criteria 

Two commonly used super-resolution reconstruction metrics including Peak Signal-to-Noise Ratio (PSNR)10 and 

Structural Similarity (SSIM)11 are adopted to evaluate the performance of different algorithms. 

3.3 Ablation experiment 

To evaluate the impact of the Spatial and Channel Transformer Group (SCTG) and the Spatial and Frequency Information 

Fusion Module (SFIFM) on the performance of infrared image super-resolution reconstruction algorithms, ablation 

experiments were conducted on the self-made infrared image dataset. The experiments focused on 2×and 3× super-

resolution cases.  

Table 1. Quantitative results of ablation experiments. 

SCTG SFIFM 
2× 3× 

PSNR(db) SSIM(%) PSNR(db) SSIM(%) 

  39.9426 0.9512 34.4231 0.9198 

 √ 40.1188 0.9587 34.7219 0.9213 

SCTG SFIFM 
2× 3× 

PSNR(db) SSIM(%) PSNR(db) SSIM(%) 

√  40.3251 0.9688 34.9854 0.9299 

√ √ 40.4961 0.9703 35.5011 0.9368 

HQI
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Table 1 shows that using only SCTG slightly reduces network performance compared to using both SCTG and SFIFM. 

For 2×  magnification, PSNR and SSIM drop by 0.171 dB and 0.15%, respectively. When only SFIFM is used, 

performance decreases more, with PSNR and SSIM dropping by 0.3773 dB and 1.16%. Without both SCTG and SFIFM, 

performance drops significantly, with reductions of 0.5535 dB in PSNR and 1.91% in SSIM. Similar trends are observed 

for 3× magnification, highlighting the importance of SCTG for enhancing global detail capture in infrared images and its 

effective collaboration with SFIFM to maintain high image quality. 

3.4 Comparison experiment 

Table 2 presents the results of the quantitative experiments on the self-made infrared image dataset, with bold font indicates 

the best metrics and underlined font indicates the second best metrics. 

Table 2. Quantitative results of comparative experiments. 

Methodologies 
2× 3× 

PSNR(db) SSIM(%) PSNR(db) SSIM(%) 

BICUBIC 34.23 94.60 30.64 90.59 

EDSR 35.7442 94.84 31.0493 91.14 

RCAN 36.9504 95.24 32.4436 91.87 

SAN 38.3923 95.83 33.6378 92.03 

SwinIR 39.9426 96.12 34.4331 92.29 

CAT 40.3706 97.17 34.6257 93.76 

OURS 40.5678 97.83 35.5211 94.13 

The experimental data show that at 2× magnification, the proposed method achieved the highest PSNR and SSIM, with 

improvements of 0.1972 dB and 0.66% over the second-best algorithm, respectively. These results demonstrate the 

effectiveness of the proposed super-resolution algorithm for infrared images. At 3× magnification, although all methods 

showed a decrease in metrics, the proposed method still led in both indicators, demonstrating its ability at high 

magnification. 

 
Figure 2. The visualization comparison result of birds and insulators in substation scenes. 
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Figure 2 shows the visualization comparison result of birds and insulators in substation scenes. For both 2× or 3×
magnification, the BICUBIC12, EDSR13, and RCAN14 algorithms produced generally mediocre results, with magnified 

images appearing blurry and lacking visual clarity. At 2 ×  magnification, SAN15 and SwinIR16 achieved some 

improvements, but the contour edges remain blurry and jagged. In contrast, both CAT17 and the proposed algorithm clearly 

magnified the texture of the stacked shapes and maintain the hierarchical detail and clarity of the edge contours. However, 

at 3× magnification, CAT failed to display the stacked shapes and jagged edges of the insulator clearly, while the proposed 

algorithm reconstructed more texture details, demonstrating good super-resolution reconstruction capability and 

effectively preserving the texture details and edge contours. 

4. CONCLUSION 

To address the issues of low resolution and blurred target edges in infrared images of power equipment from existing 

infrared sensors, a super-resolution reconstruction network based on a dual attention-guided mechanism is proposed. The 

Spatial and Channel Transformer Group (SCTG) captures long-range dependencies, accurately focusing on crucial details 

such as target shapes, thereby significantly improving super-resolution reconstruction. Additionally, a spatial frequency 

domain information fusion module (SFISM) based on fast Fourier transform (FFT) is introduced, utilizing FFT's powerful 

high-frequency detail extraction to further enhance the detail expressiveness in infrared images. By emphasizing high-

frequency details and edge information in the frequency domain, these residuals are integrated into the SCTG module, 

ensuring that the super-resolution process preserves the main structure while refining textures and edges. Extensive 

experiments demonstrate that this method surpasses existing state-of-the-art techniques, providing high-quality infrared 

image data for subsequent tasks such as substation bird target detection. 
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