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ABSTRACT 

This paper proposes a gene association analysis algorithm that effectively identifies causal relationships between genes 

through gene association entropy, and uses heuristic search strategies to construct gene association Bayesian tree 

(GABT) and gene association Bayesian forest (GABF). Unlike ordinary gene Bayesian networks that describe the 

dependency relationship between gene expression levels, GABT and GABF are a type of gene sequence Bayesian 

network. The object of gene association analysis is the sequence formed by sorting the gene expression values of 

biological tissue samples and replacing them with gene column subscripts. The experimental results on multiple tumor or 

non tumor gene expression datasets show that the Bayesian network classification algorithm based on gene association 

analysis can better fit gene expression data than other similar algorithms, with significantly improved accuracy or 

reduced analysis time. 

Keywords: Gene expression data, gene association entropy, bayesian network, gene association bayesian tree, integrated 

classification 

1. INTRODUCTION

Gene expression data is a specific type of big data with biological background. Gene expression data analysis covers 

areas such as unsupervised learning, supervised learning, and gene regulatory networks, among which gene expression 

data classification is the most important supervised learning method1,2. Due to the special subspace pattern similarity of 

gene expression data, in order to mine pattern information, the gene expression values of tissue samples are often sorted 

and replaced with column labels. The order preserving submatrix (OPSM)3,4 is a typical biclustering method for mining 

its longest common subsequence. 

After sorting gene expression values and replacing them with gene labels, the gene sequence forms a hidden Markov 

model, and the state transition probability of this model implies causal relationships between genes5,6. Mining causal 

structures hidden in training data and applying them to Bayesian networks is popular research directions in recent years. 

Bayesian networks7 typically use the network topology of naive Bayes (NB) models as the basic framework for 

classifiers. Due to the absence of conditional independence assumptions and any causal relationships in NB, there is no 

need for network structure learning, which often does not match the actual situation. Therefore, a restricted Bayesian 

network classifier adds directed edges between nodes to improve NB. Restricted Bayesian network classifiers8-10 mainly 

include single and ensemble Bayesian network classifiers. Single structure Bayesian network classifiers include KDB, 

TAN, CFWNB, BCT, etc. Bayesian network ensemble classifiers include AODE, WATAN, IWAODE, WAODE-MI, 

TAODE, BCF, etc. 

However, existing Bayesian network classifiers or ensemble classifiers cannot be directly used for gene expression data 

classification11-13. (1) The use of Euclidean distance does not take into account the special similarity measurement criteria 

for gene expression data. The expression values of closely related genes in biology may not be close, but they may 

exhibit a consistent trend of rising and falling at the same time; (2) The existing Bayesian network classifiers have high 

time complexity and poor performance when the number of variables increases, resulting in time bottlenecks; (3) At 

present, Bayesian network classifiers are aimed at general discrete feature variables, and their performance is poor when 

directly classifying gene expression data. 

*lxh_2402@163.com

International Conference on Optics, Electronics, and Communication Engineering (OECE 2024), 
edited by Yang Yue, Proc. of SPIE Vol. 13395, 133953C · © 2024 SPIE · 0277-786X · Published 

under a Creative Commons Attribution CC-BY 3.0 License · doi: 10.1117/12.3049912

Proc. of SPIE Vol. 13395  133953C-1



Based on the above issues, it is urgent to propose an advanced Bayesian network method to handle the problem of gene 

expression data classification. This paper studies gene association analysis algorithms and uses heuristic search strategies 

to construct a gene association Bayesian forest classifier. The experimental results verify the effectiveness of the 

algorithm proposed in this paper. 

2. MINING GENE ATOMIC SEQUENCES OF GENE EXPRESSION DATA 

With the development of genomics and bioinformatics, a massive amount of gene expression data related to various 

diseases has been accumulated14. Table 1 is an example of gene expression data for classification. Among them, each 

row represents a tissue sample si (si1, si1, …, sin). Each row in the table can be regarded as a vector, where sij is the 

expression level of gene j in sample si. If Table 1 is a classified dataset, the tissue sample can be represented as si (si1, si1, 

…, sin, yi), where yi is the category label to which the sample belongs, such as “-”, “+”, etc. 

Table 1. Sample example of gene expression data. 

Sample G1 G2 G3 G4 G5 G6 

s1(-) 0.155 0.076 -0.201 0.254 0.013 -0.181 

s2(-) 0.217 0.084 0.150 0.165 -0.159 0.132 

s3(-) 0.375 0.115 0.284 0.076 -0.094 0.155 

s4(-) 0.238 0 -0.159 0.129 -0.191 0.217 

s5(-) -0.073 -0.146 0.443 0.818 -0.341 0.227 

s6(-) 0.394 0.909 0.426 0.768 1.070 0.226 

s7(+) 0.385 0.822 0.244 0.550 1.013 0.327 

s8(+) 0.329 0.690 0.066 0.529 0.790 0.313 

s9(+) 0.384 0.730 0.066 0.529 0.852 0.313 

s10(+) -0.316 -0.191 0.202 -0.140 0.043 0.076 

2.1 Mining frequent gene atomic sequences 

In order to explore the gene correlation of the classified gene expression data shown in Table 1, we first ignore the 

sample categories and preprocess the gene expression values by sorting them. This transforms pattern mining into a 

frequent order-preserving sequence mining problem15. Here, we mainly consider the frequent atomic sequence mining 

problem with a length of 2. 

(1) Sorting the gene expression values of each sample in descending order, as shown in Table 2. 

(2) Replacing gene expression values with gene column subscripts, as shown in Table 3.  

(3) Counting the number of occurrences of frequent gene atomic sequences. 

If the minimum support number is 2, the statistics of frequent gene atomic sequences and their occurrence times are 

shown in Table 4. 

Table 2. Descending sorting of gene expression values in Table 1. 

Sample Descending sorting of gene expression values 

s1(-) 0.284(g3) 0.155(g1) 0.097(g4) 0.076(g2) 0.023(g6) 0.013(g5) 

s2(-) 0.409(g3) 0.217(g1) 0.138(g4) 0.129(g6) 0.084(g2) -0.159(g5) 
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Sample Descending sorting of gene expression values 

s3(-) 0.375(g1) 0.254(g4) 0.115(g2) -0.094(g5) -0.181(g6) -0.201(g3) 

s4(-) 0.238(g1) 0.165(g4) 0.15(g3) 0.132(g6) 0.0(g2) -0.191(g5) 

s5(-) 0.442(g3) 0.063(g6) -0.073(g1) -0.077(g4) -0.146(g2) -0.341(g5) 

s6(-) 1.070(g5) 0.909(g2) 0.818(g4) 0.443(g3) 0.394(g1) 0.227(g6) 

s7(+) 1.013(g5) 0.822(g2) 0.768(g4) 0.426(g1) 0.385(g6) 0.226(g3) 

s8(+) 0.790(g5) 0.690(g2) 0.55(g4) 0.329(g1) 0.327(g6) 0.244(g3) 

s9(+) 0.852(g5) 0.730(g2) 0.529(g4) 0.384(g1) 0.313(g6) 0.066(g3) 

s10(+) 0.202(g3) 0.076(g6) 0.043(g5) -0.140(g4) -0.191(g2) -0.316(g1) 

Table 3. Gene column subscript list. 

Sample Gene column subscript sequence 

G3 

G4 

G5 

G6 

s1(-) 3→1→4→2→6→5 

s2(-) 3→1→4→6→2→5 

s3(-) 1→4→2→5→6→3 

s4(-) 1→4→3→6→2→5 

s5(-) 3→6→1→4→2→5 

s6(-) 5→2→4→3→1→6 

s7(+) 5→2→4→1→6→3 

s8(+) 5→2→4→1→6→3 

s9(+) 5→2→4→1→6→3 

s10(+) 3→6→5→4→2→1 

Table 4. Frequent gene atomic sequences. 

Atomic 

sequence 

Counts Atomic 

sequence 

Counts 

6→5 2 4→1 2 

4→3 3 3→1 4 

2→4 4 4→2 4 

1→4 5   

2→5 4   

3→6 3   

1→6 4   

6→2 2   

6→3 3   

5→2 4   

3. GENE ASSOCIATION ANALYSIS 

Gene association analysis draws inspiration from the ideas of frequent patterns and association rules in data mining, and 

defines gene association rules for mining implicit causal relationships using gene association entropy. 
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3.1 Defining gene association entropy 

Defination 1. Gene association entropy. For any frequent gene atomic sequence x→y, we let Yi(i=1,2,…,n) be the y 

parent node gene, and Xj (j=1,2,…,m) be the x parent node gene. The correlation entropy 

H (x→y)= ( )
j i

i j

X Y

H Y y X x→ →  = ( ) ( ), ln
j i

j i i j

X Y

P X x Y y P Y y X x− → → → →  

Where, the calculation formula for conditional probability ( )i jP Y y X x→ →  is: 

( )
( )

( )

,j i

i j

j

P X x Y y
P Y y X x

P X x

→ →
→ → =

→
   

                                                          

(1) 

In order to avoid the numerator or denominator of equation (1) being 0, the initial values of counters 

( ),j ic X x Y y→ →  and ( )jc X x→  in Table 3 are set to 1. The correlation entropy results of frequent gene atomic 

sequences are shown in Table 5. 

Table 5. Association entropy of frequent gene atomic sequences. 

No. 
Atomic 

sequence 

Correlation 

entropy 
No. 

Atomic 

sequence 

Correlation 

entropy 

1 5→2 0.805 8 4→2 1.257 

2 4→3 0.852 9 2→4 1.318 

3 2→5 0.856 10 3→6 1.386 

4 6→5 0.946 11 6→2 1.453 

5 6→3 1.007 12 4→1 1.568 

6 3→1 1.109 13 1→6 2.047 

7 1→4 1.159    

3.2 Genetic association rule mining algorithm 

The gene association rule mining algorithm measures the correlation degree of frequent gene atomic sequences through 

association entropy, and then sorts and compares the gene association entropy H(x→y) to obtain a set of gene association 

rules x→y with strong correlation degree. The pseudocode of the gene association rule mining algorithm (GA) is shown 

in Algorithm 1. 

Algorithm 1. GA (A, , max_entropy) 

Input: gene expression data-A, minimum support- , correlation entropy threshold-max_entropy 

Output: strong gene association rule set-Grule  

(1) Grule = null  

(2) =ordering(A, G) // G is the set of gene column labels 

(3) for each S∈ do 

(4) for each x→y∈S do 

(5) if x→y Grule then 

(6) w(x→y)=1, Grule.add(x→y) 
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(7) else w(x→y)= w(x→y)+1 

(8) for each x→y∈Grule do 

(9) if c( x→y) ≥  then 

(10) Calculating H(x→y) according to Definition 1 

(11) else Grule.delete(x→y) 

(12) ordering(Grule, H(x→y))  

(13) Grule= Grule.intercept(max_entropy) 

(14) return Grule  

4. INTEGRATED CLASSIFICATION OF GENE BAYESIAN ASSOCIATION NETWORKS 

4.1 Gene Bayesian association tree 

Bayesian networks based on gene association analysis are an effective method for constructing network models. Due to 

the asymmetric nature of gene association (gi→gj), it can be well used to analyze the causal relationship between genes gi 

and gj
16. In order to control the complexity of the model, this paper limits the topology of the gene Bayesian network to a 

first-order correlated directed acyclic graph, where any gene gi has only one parent gene Fi, forming a gene Bayesian 

association tree (GBAT). 

Algorithm 2 is a pseudocode for constructing a gene association tree algorithm, which describes the process of adding 

directed edges to GBAT based on gene association degree. 

Algorithm 2 GBAT_Learning (Grule, g={g1, g2,…, gn, C}) 

Input: Gene Association Rule Set -Grule，Genes and Categories -{g1, g2,…, gn, C} 

Output: GBAT network topology 

(1) Initializing GBAT tree: T(r)=(U, V)，U={C}, V=null 

(2) Root selection: U=U∪{gr}, g= g\{gr}, V = V∪{C→gr} 

(3) while ( g )  

(4) Selecting the maximum correlation gi→gj(gi∈U, gj∈g) 

(5) U=U∪{gj}，g= g\{gj}，V = V∪{C→gj, gi→gj} 

(6) return T(r) 

Defination 2. Gene conditional probability table (GCPT). For any gene node Y in the Bayesian correlation tree, if 

Xi(i=1,2,…,n) is its parent node gene, then the value of gene node Y is {Xi→Y, c→Y }. If Zi is the parent node of Xi, then 

in the conditional probability table of gene node Y, the conditional probabilities for row <c, Zi→Xi >, and column 

P(Y=Xi→Y) are represented as 

 P(Y=Xi→Y| c, Zi→Xi) (2) 

The frequency of association rules is used to represent the corresponding conditional probability of GCPT, where c 

represents the class label. 

4.2 Genetic Bayesian association forest 

If different genes are selected as root nodes for gene association inference, there will be significant differences in the 

structure of GBAT trees constructed from training data, reflecting the diversity of gene association relationships between 

different GBAT trees. The diversity of GBAT increases the generalization classification ability of the ensemble model. 

This paper further constructs a gene Bayesian association forest (GBAF) classifier, as shown in Figure 1. 
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Figure 1. The learning framework of GBAF. 

Algorithm 3 is a pseudo code for the training and testing process of GBAF classifiers. 

Algorithm 3 GBAF_ Learning( , g={g1, g2, …, gn, C}, x) 

Input: Gene expression data - , Genes and categories-{g1, g2, …, gn, C}, Test sample-x 

Output: Predicted class labels -y*  

GBAF_ Training( , g={g1, g2, …, gn, C}) 

(1) Grule = GA ( , , max_entropy) 

(2) for ( r =1 to n) 

(3) selecting gr as root node 

(4) GBAT_ Learning(Grule, g={g1, g2, …, gn, C}) 

(5) return GBAT1, …, GBATn 

GBAF_ Testing(GBAT1, …, GBATn, x) 

(6) for ( k =1 to m) 

(7) for ( r =1 to n) 

(8) computing Pr(x, ck) of GBATr according to Figure 1. 

(9) P(x, ck)= ( )
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5. EXPERIMENTAL RESULTS AND ANALYSIS 

This paper evaluates the performance of the proposed algorithm using 9 datasets shown in Table 6. The experiment was 

conducted on a computer with a 2.60GHz Intel (R) Core (TM) i7-6700HQ CPU, 16GB of memory, and Windows 10 

operating system. 

5.1 Datasets and comparison classifiers 

The 9 gene expression data used in experiments include 6 tumor datasets and 3 non tumor datasets, mainly from libSVM 

(http://www.csie.ntu.edu.tw/~Cjlin/libsvmtools/datasets/) and UCI website (https://archive.ics.uci.edu/ml/datasets). 

Tumor data sets include Leukemia, Colon, SRBCT, Brain, Breast cancer and Duke_bc; Non tumor datasets include 

Heart, Mushrooms, and Proteins. Table 6 lists the parameters of the relevant dataset. 
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Table 6. Gene expression dataset. 

Dataset No. of genes No. of samples No. of class 

Leukemia 7129 72 2 

Colon 2000 62 2 

SRBCT 2308 83 4 

Brain 5920 90 5 

Breast cancer 10 683 2 

Duke_bc 7129 44 2 

Heart 13 270 2 

Mushrooms 112 8124 2 

Protein 357 17766 3 

The experiment compared the gene Bayesian association forest classification algorithm GBAF proposed in this paper 

with Bayesian network variants and other classifier algorithms, and verified the ensemble effectiveness of GBAF. 

 Variations of Bayesian networks 

Naive Bayesian Network BN_NB, two conditional independence testing algorithms BN_CI and BN_ICS, simulated 

annealing global scoring metric BN_SA, CFWNB17 (correlation based feature weighting filter for naïve Bayes), 

WATAN18 (weighted average tree augmented naïve Bayes), and the GBAF proposed in this paper. 

 Other classifier algorithms 

SVM(Support Vector Machine), KNN(K-Nearest Neighbor), LR(Logistic Regression), LB(LevBag), OB(OzaBoost), 

RF(Random Forests) 

5.2 Comparison results of BN variant algorithms 

(1) RMSE experimental results 

Table 7 presents the experimental results of the RMSE metric for BN variant classifiers on 9 datasets. 

Table 7. RMSE experiment results. 

Dataset BN_NB BN_SA CFWNB WATAN BN_CI BN_ICS GBAF 

Leukemia 0.4830 0.5045 0.4111 0.4277 0.3952 0.4056 0.3696 

Colon 0.4025 0.3716 0.2952 0.3315 0.3237 0.3409 0.3174 

SRBCT 0.0689 0.0137 0.0270 0.0177 0.0159 0.0124 0.0331 

Brain 0.3020 0.2759 0.2419 0.2705 0.2304 0.2501 0.2341 

Breast cancer 0.2613 0.2800 0.3589 0.3203 0.3201 0.3198 0.2491 

Duke_bc 0.4915 0.4526 0.3150 0.3076 0.3250 0.3297 0.3078 

Avg RMSE 0.3349 0.3164 0.2749 0.2792 0.2684 0.2764 0.2652 

Avg rank 5.833 4.833 3.833 4.000 2.833 3.500 3.167 

Heart 0.6005 0.4791 0.3384 0.3418 0.3450 0.3443 0.3285 

Mushrooms 0.3495 0.2315 0.4334 0.4023 0.3992 0.3984 0.3161 
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Dataset BN_NB BN_SA CFWNB WATAN BN_CI BN_ICS GBAF 

Protein 0.4671 0.2892 0.3929 0.3504 0.3516 0.3487 0.3397 

Avg RMSE 0.4724 0.3333 0.3882 0.3648 0.3653 0.3638 0.3548 

Avg rank 6.333 3.567 5.000 4.333 5.000 3.667 2.000 

Overall RMSE 0.3807 0.3220 0.3126 0.3078 0.3007 0.3055 0.2950 

Overall rank 6.167 5.111 4.222 4.111 3.556 3.556 2.778 

(2) Friedman and Nemenyi test 

The seven algorithms used in the experiment follow F distribution with degrees of freedom of 7-1=6 and (7-1) × (9-

1)=48. When a =0.05, the critical value of F(6, 48) is 2.298. From Table 7, it can be calculated that FF is 3.337, and the 

result is greater than 2.298. Therefore, Nemenyi's subsequent test is conducted. 

When a=0.05, the critical value CD of 7 algorithms on 9 datasets is 2.408. As shown in Figure 2, GBAF outperforms 

other algorithms in RMSE. 

 

Figure 2. Comparison results of Nemenyi test in RMSE. 

(3) Classification time comparison 

The comparison results of classification time in Figure 3 show that the training time of GBAF is slightly longer than 

CFWNB and BN-NB, and the testing time is only slightly longer than CFWNB. Therefore, GBAF has good time 

performance. 

  

Figure 3. Comparison of average training and classification time on 9 datasets. 

5.3 Comparison between GBAF and other classifiers 

We compare the accuracy metrics of GBAF with the other six classifiers and provide the Nemenyi test statistical analysis 

results.  

(1) Accuracy experimental results 

Table 8 presents the experimental results of classification accuracy indicators for GBAF and 6 other classifiers on 9 

datasets. 
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Table 8. Accuracy experimental results. 

Dataset LR SVM KNN OB LB RF GBAF 

Leukemia 0.7667 0.7444 0.8019 0.7537 0.8074 0.8120 0.8130 

Colon 0.7570 0.7897 0.8272 0.7804 0.7804 0.7477 0.8037 

SRBCT 0.9834 0.9993 0.9980 0.9986 0.9989 0.9992 0.9992 

Brain 0.8176 0.8109 0.8514 0.8311 0.8581 0.8446 0.8581 

Breast cancer 0.8976 0.8656 0.7504 0.7264 0.7168 0.7168 0.7488 

Duke_bc 0.7584 0.7951 0.8501 0.8620 0.8498 0.8442 0.8637 

Avg Acc 0.8301 0.8342 0.8465 0.8254 0.8352 0.8274 0.8478 

Avg rank 6.333 5.333 3.333 4.583 3.917 4.500 2.000 

Heart 0.6395 0.7687 0.8402 0.8265 0.8401 0.8401 0.8435 

Mushrooms 0.8779 0.9875 0.6900 0.7735 0.7338 0.7370 0.7714 

Protein 0.6727 0.6660 0.6300 0.7248 0.7211 0.7257 0.7347 

Avg Acc 0.7300 0.8074 0.7201 0.7749 0.7650 0.7676 0.7832 

Avg rank 6.667 6.333 4.333 3.667 4.500 3.500 2.000 

Overall Acc 0.7968 0.8252 0.8044 0.8086 0.8118 0.8075 0.8262 

Overall rank 6.801 6.234 4.673 4.812 4.318 4.000 2.000 

 

Figure 4. Comparison results of Nemenyi test in accuracy. 

(2) Statistic analysis 

The seven algorithms used in the experiment follow F distribution with degrees of freedom of 7-1=6 and (7-1)×(9-1)=48. 

When a =0.05, the critical value of F(6, 48) is 2.298. From Table 7, it can be calculated that FF is 3.813, and the result is 

greater than 2.298. Therefore, Nemenyi's subsequent test is conducted. 

When a=0.05, the critical value CD of 7 algorithms on 9 datasets is 2.408. As shown in Figure 4, GBAF outperforms 

other algorithms in accuracy. 

6. CONCLUSION 

For complex gene similarity relationships, traditional methods such as distance and correlation coefficient can only 

reflect gene linear similarity, while entropy based measurement methods such as conditional entropy and mutual 

information can mine pattern similarity and effectively reflect complex relationships between genes. 

The gene association analysis algorithm proposed in this paper effectively identifies causal relationships between genes 

by defining gene association entropy, and uses heuristic search strategies to construct gene association Bayesian tree 
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GABT and gene association Bayesian forest GABF. How to apply gene association analysis to the construction of gene 

regulatory networks and the inference process of Bayesian networks is the focus of future research. 

REFERENCES 

[1] Yang, X. H., Wang, Z., Sun, J. and Xu, Z. B., “Unlabeled data driven cost-sensitive inverse projection sparse 

representation-based classification with 1/2 regularization,” Science China: Information Sciences, 65(8), 1-18 

(2022). 

[2] Jiang, T. and Li, Z. H., “A survey on local pattern mining in gene expression data,” Journal of Computer 

Research and Development, 55(11), 2343-2360 (2018). 

[3] Wang, H. X., Pei, J. and Yu, P. S., “Pattern-based similarity search for microarray data,” Proc. 11th ACM 

SIGKDD Int Conf on Knowledge Discovery and Data Mining, New York, USA, ACM, 814-819 (2005). 

[4] Liu, J. Z. and Wang, W., “OP-clustering by tendency in high dimensional space,” Proc. 3rd IEEE Int Conf on 

Data Mining, Piscataway, 187-194 (2003). 

[5] Fan, H. Q., [Research of Bayesian causal forest based on ensemble learning], Changchun: Jilin University, 

Master’s Thesis, (2022). 

[6] Tsamardinos, I., Aliferis, C. F. and Statnikov, A., “Algorithms for large scale Markov Blanket discovery,” Proc. 

16th International Florida Artificial Intelligence Research Society Conference, AAAI Press, 376-381 (2003). 

[7] Jiang, L., Zhang, L., Yu, L. and Wang, D., “Class-specific attribute weighted naïve Bayes,” Pattern 

Recognition, 88(3), 321-330 (2019). 

[8] Friedman, N., Geiger, D. and Goldszmidt, M., “Bayesian network classifiers,” Machine Learning, 29(1), 131-

163 (1997). 

[9] Webb, G. I., Boughton, J. R. and Wang, Z., “Not so naïve Bayes: aggregating one-dependence estimators,” 

Machine Learning, 58(5), 5-24 (2005). 

[10] Wang, L., Qi, S., Liu, Y., Lou, H. and Zuo, X., “Bagging k-dependence Bayesian network classifiers,” 

Intelligent Data Analysis, 25(1), 641-667 (2021). 

[11] Liu, Y., Wang, L. and Mammadov, M., “Learning semi-lazy Bayesian network classifier under the c.i.i.d 

assumption,” Knowledge-Based Systems, 208(6), 106-112 (2020). 

[12] Heckerman, D., “A Bayesian approach to learning causal networks,” Advances in Decision Analysis: From 

Foundations to Applications, 150(9), 285-295 (2013). 

[13] Kong, H., Shi, L., Wang, L., Liu, Y., Mammadov, M. and Wang, G., “Averaged tree-augmented one-

dependence estimators,” Applied Intelligence, 7, 1-17 (2021). 

[14] Yu, L. and Ren, S. J., “Prediction of cancerous pathogenic genes based on network and gene differential 

expression information,” Scientia Sinica Vitae, 53(1), 94-108 (2023). 

[15] Wang, C. Y., Zhang, J., Wang, X. P., et al., “Pathogenic gene prediction algorithm based on heterogeneous 

information fusion,” Front Genet, 11(5), 123-131 (2020). 

[16] Sun, J., Taylor, D. and Bollt, E. M., “Causal network inference by optimal causation entropy,” SIAM Journal on 

Applied Dynamical Systems, 14(3), 73-106 (2015). 

[17] Jiang, L., Zhang, L., Li. C. and Wu. J., “A correlation-based feature weighting filter for naïve baayes,” IEEE 

Transactions on Knowledge and Data Engineering, 31(3), 201-213 (2018). 

[18] Jiang. L., Cai. Z., Wang. D. and Zhang. H., “Improving tree augmented naïve bayes for class probability 

estimation,” Knowledge-Based Systems, 26(10), 239-245 (2012). 

Proc. of SPIE Vol. 13395  133953C-10


