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ABSTRACT 
The task of detecting, identifying, and engaging asymmetric threats operating amongst 
civilian populations is a significant challenge for modern armies.  Enemy activities in 
urban areas can be very difficult to detect and monitor using traditional intelligence, 
surveillance, and reconnaissance (ISR) assets.  The concept of Persistent Surveillance 
provides a new methodology for detecting and identifying hostile forces operating 
amongst civilians in urban battlefields.  The sensors, platforms, and data architectures 
which compose a persistent surveillance system must be chosen to maximize coverage 
and minimize obscuration while providing timely and relevant data to friendly forces on 
the ground.  An illustrative example considering the specific operational concepts and 
resulting system choices for optimizing an airborne infrared persistent imaging system 
will be discussed. 
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1. Persistent Surveillance: Background and Motivation 
 
Recent conflicts and peace keeping activities have magnified the need for improved warfighting approaches 
to address asymmetric warfare in urban environments.  Today’s threat is one that is often times difficult to 
distinguish from the indigenous civilian population.  The enemy will not wear distinctive uniforms, drive 
military-style vehicles or rely solely on traditional military weaponry.  Instead they will operate in civilian 
population centers, and seek to blend into and fight from amongst the non-combatant population 1.  The 
enemy will be able to choose the time and location of engagements with opposing forces.  They will have 
access to a myriad of improvised explosive devices, with ever evolving employment and detonation 
techniques, and use these concealed weapons to disrupt force movement and inflict both physical and 
psychological damage.  Recent experience has shown that in complex urban environments, many 
traditional methods to identify and address an active asymmetric threat are ineffective 2.  New 
methodologies and systems are therefore necessary to robustly identify and combat enemy forces 
conducting asymmetric warfare in urban environments.   
 
The concept of persistent surveillance offers a new framework for detecting and identifying enemy 
activities amongst civilians in urban battlefields.    

1.1. Episodic vs. Synoptic Surveillance 
A persistent surveillance approach seeks to use any and all available sensors to capture a complete record 
of all activities that have occurred and are occurring within a potential battlefield.  If successful, persistent 
surveillance data will capture a record of all civilian and enemy actions over an extended period of time.  
This data can then be exploited in a variety of ways; real-time distribution to engaged units in the city can 
provide useful situational awareness of current and potential threats, while forensic analysis of recorded 
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data can be used to work backwards from an enemy attack to find the geographic origins of the enemy 
activity and to understand and root out established enemy networks.   While capturing a truly complete and 
persistent picture of all activities occurring in a densely populated urban environment is not practical (or 
arguably possible), it is useful to examine the differences between this persistent surveillance approach to 
understanding enemy activity and the surveillance approaches employed by traditional battlefield 
intelligence-gathering assets.  Successful persistent surveillance seeks to provide synoptic coverage of all 
events occurring in a given area over a given time.  Enemy threats in this area are not identified by their 
uniforms or their vehicles or their appearance, but rather by their behavior; the historical and current 
differences between how enemy forces behave and how the surrounding civilian population behaves.  
Surveillance sensors in the past have sought to identify enemy activity episodically, by providing short 
periods of high-resolution coverage of potential targets.  Episodic identification in this manner is much 
more difficult in asymmetric urban environments where enemy forces remain well-concealed amongst 
dense civilian populations until moments before an attack.  In the past, episodic surveillance sensors have 
concentrated on providing the fidelity necessary to uniquely identify enemy forces by their distinguishing 
physical features.  This has led to complex and expensive systems providing high resolution data from the 
standoff ranges necessary for the observing sensor to remain covert.  By contrast, the synoptic coverage 
required for persistent surveillance can often be achieved with simpler sensors providing lower 
instantaneous resolution, since enemy forces will be identified by their recorded behavior in both time and 
space, not solely by their unique physical features at a particular point in time.   Accepting that persistent 
surveillance sensors will thus meet a different set of requirements from those of other surveillance sensors, 
it is worth considering the strengths and weaknesses of the available modalities and locations that such 
sensors might utilize.  
 

2. Comparison of Modalities/Systems 
 
Ground-based persistent sensors can provide very high fidelity coverage, due to the relatively short ranges 
between the sensors and their intended targets.  However ground-based sensors will have difficulty 
covering large areas, as they will be limited in range by line of sight obstructions, especially in urban 
environments.  Limited area coverage per sensor will require more sensors to cover a given space.  
Challenges with sensor emplacement, power, communications and survivability will grow exponentially as 
the density of sensors increases, especially if they must operate in un-pacified urban environments. 
 
Air-based persistent sensing approaches can provide much larger area coverage per sensor compared to 
ground-based approaches, as their operating geometries are much less hampered by urban line of sight 
obscurations.  Numerous manned and unmanned platform options exist.  One challenge involves the 
potential atmospheric obscurations between the sensor and the ground; optical imaging approaches cannot 
penetrate most clouds.  Visible imaging approaches are further limited to day-only operations.  Infrared 
imaging systems can provide true 24 hour coverage, but generally at a higher size, weight, and cost per 
pixel than visible systems.  Radar approaches, while less sensitive to weather, will have other challenges 
when operating above complex urban environments 3.  Distinguishing true target signals from passive 
clutter can be very difficult, and high-resolution synthetic aperture imaging approaches work best at 
relatively low slant angles between the sensor and the ground, which leads to limited coverage due to 
geometric shadowing from buildings in an urban scene.   
 
Each system and emplacement option has associated strengths and weaknesses.  Currently, air-based 
imaging system concepts appear to offer the most advantages from an area coverage and logistics 
standpoint, and more operational flexibility than ground-based or airborne radar-based approaches in urban 
terrain.  The remainder of this paper will focus on air-based persistent imaging approaches for military 
applications. 
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Geometry will put a hard limit on useful urban coverage unless the platform aircraft can rise in altitude to 
accommodate the larger sensor fidelity.  If the aircraft cannot rise to higher operational altitudes, 
improvements in sensor pixel density should therefore be utilized to provide increased resolution in a fixed 
area, and not more coverage area at a fixed resolution. 
  
As mentioned earlier, careful consideration must also be paid to the anticipated meteorological conditions 
for the area of operations, specifically cloud ceiling height and likelihood of occurrence.  Persistent 
imaging sensors cannot choose the best days to fly – by definition, persistent coverage requires continuous 
operation over extended periods of time, irrespective of changing weather patterns.  Figure 3 shows cloud 
ceiling statistical data for the climatologic wettest and driest months for example cities in three different 
regions of the world.  As can be seen, imaging sensor operations at altitudes above 10,000 ft. will be 
significantly impacted by cloud obscuration in certain seasons and parts of the world. Even operation at low 
altitudes in certain areas does not guarantee the ability to see the ground all months of the year.      

 
Figure 3 - Likelihood of cloud layer at or below a particular altitude for various geographic locations.  Data 

provided by 14th Weather Squadron, Air Force Combat Climatology Center 

The factors of geometric and meteorological obscuration can work together to limit the available options 
for operationally useful airborne persistent imaging approaches.  Higher system altitudes will reduce 
geometric obscuration in urban terrain but also raise the likelihood of obscured vision due to cloud cover.   
Lower altitudes will reduce the un-obscured coverage area visible from any single platform, but enable 
imaging sensors to fly beneath the clouds.  One potential solution to these counter-acting factors could be 
to construct a network of relatively small airborne imaging sensor platforms operating together over the 
region of interest.  Such a network could provide synchronous coverage of a large urban area from 
favorable imaging geometries while remaining below the typical cloud ceilings for the region.   
 

4. System Concepts and Requirements 
 
Air-based persistent imaging systems must include several key components and sub-systems.  These 
include the host platform, the imaging sensor assembly, an image data processor, and the data storage 
system, or an image data link to a ground-based storage and analysis site.  Careful consideration and 
analysis must be made with respect to mission requirements, logistics, technology and budget when 
selecting the combination of these components to assemble into a viable persistent surveillance system 
concept.   
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Figure 6 –MWIR image taken of the same scene in Figure 4, above.  Passive radiation from the scene enables 
adequate SNR across the image, and image quality is not limited by dynamic range issues  

 
Figure 7 - Comparison of minimum aperture diameters at a variety of desired optics resolutions (measured by 
ground sampled distance, GSD) for LWIR and MWIR operation.  It can be seen that higher resolutions can be 

achieved for smaller optics apertures using MWIR detectors, holding all other parameters equal. 

 
The relatively small pixel counts of currently available MWIR or LWIR focal plane arrays combined with 
the size, weight and cost of each infrared FPA and camera assembly makes ganging of multiple cameras to 
cover large areas impractical for cooled thermal infrared sensors.  Currently, staring MWIR infrared arrays 
can be obtained at pixel counts up to 4096 x 4096.  LWIR arrays have been fabricated with 1280 x 1024  
pixel elements.  Linear infrared arrays are available with pixel counts up to 6144, with time delay and 
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integration (TDI) capabilities providing increased sensitivity along the scanned direction.  Due to the slow 
and risk-intensive process of developing very large format infrared FPAs ( >16 megapixels) , practical, 
near-term infrared persistent imaging systems will use proven FPA technologies combined with either step 
stare or TDI scanning techniques to maximize area coverage at a reasonable scene update rate.  Step stare 
approaches literally step a sensor across a scene by mechanically moving the field of view.  Integration 
time, angular step size, mechanical pointing limitations, degree of image overlap and desired revisit rate 
will dictate viable scan patterns and rates.  This approach is quite flexible and allows for real time 
modification of the scan pattern and coverage area.  TDI scanning is used with specialized linear infrared 
arrays that consist of a few rows (4-16) of pixels that are hundreds to thousands pixels across.  The devices 
have the ability to transfer charge down each column while scanning, which allows multiple pixels to view 
the same portion of a scene and contribute to the collected signal.  This capability also results in 100% 
effective pixel operability as bad pixels can be ignored since other pixels in the column will sample the 
same area.  Both TDI and step-stare approaches have been demonstrated in first generation airborne 
infrared persistent surveillance imaging systems. 
 

4.3. Onboard processing and storage 
Platform selection and mission will strongly influence the onboard processing and storage requirements for 
a persistent surveillance imaging system.  Although early persistent surveillance sensors have chosen the 
architecturally simplest approach of storing all raw image data onboard the aircraft for subsequent post-
mission processing, this approach will scale poorly for long-duration missions, and can lead to significant 
latencies in producing useful surveillance information to users after mission completion.  Ideally, one 
would like to conduct image processing on board immediately after capture, and only save or send resulting 
information products (e.g. vehicle and personnel track files) to the user.  The fact that most of any single 
image captured by a persistent surveillance sensor has not changed from the previous frame taken moments 
before suggests that processing techniques which detect and save (or transmit) data on image-to-image 
changes within the scene could yield dramatic amounts of reduction in data from the sensor.  Such change-
based processing will require fast and efficient processing hardware and robust algorithms to rapidly ortho- 
and geo-rectify large image files before they are compared to previous frames for changes.  Future 
generations of airborne persistent imaging sensors will likely use a variation of this change-based 
processing approach to handle the large quantities of imagery captured per mission.  Any selected 
processing and storage techniques must also include the ability to associate accurate time and location 
metadata with the saved or transmitted image information.   
 

5. Conclusions 
 
Airborne persistent imaging systems show great promise to aid the warfighter in combating asymmetric 
threats in complex urban terrain.  Properly optimized airborne imaging systems can enable a full range of 
real-time overwatch capabilities and simultaneous forensic coverage to permit the determination of enemy 
trends and tactics through longer duration monitoring of networks and activities.  A first-generation of 
airborne persistent surveillance imaging sensors has been operationally demonstrated, and future systems 
are being actively developed by a number of laboratories 6.  Passive infrared persistent imaging systems 
provide particular value by enabling continuous overwatch and activity monitoring both day and night.  
Operationally, careful consideration must be made to collection geometries and meteorology.  Component 
technologies are currently available to support multiple viable infrared persistent imaging system 
approaches.  Platform selection and availability will help define limits for many important parameters and 
ultimately make the system development trade space more manageable.   Development of robust and 
efficient image processing techniques that can be implemented on the aircraft alongside the sensor system 
will assist in the areas of data storage, data transmission and/or post processing.   
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