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ABSTRACT   

 

We report on recent studies of magneto-optic properties and Faraday rotation of polythiophenes and macrocycles of 3-
alkylthiophenes.  The hypothesis of the existence of persistent currents, analogous to the persistent currents in 
mesoscopic metal structures, is forwarded as a relevant mechanism basic to the large Faraday rotation in conjugated 
polymers as well as for the ferromagnetic transition in these polymers at cryogenic temperatures.  Macrocycles of 
alkylthiophenes are presented and discussed as fundamental structures to investigate persistent currents in nanoscopic 
organic materials.  

Keywords: Faraday rotation, ferromagnetism, polymer, regioregular substituted poly(3-alkylthiophene)s, macrocyles, 
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INTRODUCTION: NONLINEAR OPTICS 
 
 
Since the first measurement of second harmonic generation from a crystal at optical frequencies, the famous Franken 
experiment1, nonlinear optics became a field of intense research with wide and often unexpected ramifications.  Further 
investigations of the hyperpolarisabilities of organic molecules and polymers, using electric field induced second 
harmonic generation (EFISHG)2 and since the 90s Hyper Rayleigh scattering (HRS)3, gave rise to new fields of organic 
photonics, electro-optical devices, biomedical technologies, etc…   
Commonly the fundamental equation governing nonlinear optics is the optical polarisation written as a series expansion 
of the electric field strength in the optical field: 
 

                                                       P(ω ) =  χ (1) E(ω )  + χ (2) E(2)(ω ) + χ (3) E(3)(ω )   +   ...                                      (1) 
 
here the linear term in E(ω) describes most, if not all, of linear optics, as the constitutive equation in Maxwell’s 
equations, while the higher terms describe the nonlinear response.  The χ(2), χ(3) are second, third order terms, the 
nonlinear susceptibilities, actually tensors of the third and fourth order, making nonlinear optics sometimes difficult but 
very rich in possibilities due to the symmetries involved.   These nonlinear susceptibilities are very small, identifying 
nonlinear optics mainly as a laser field with the high optical field intensities accessible in (focused) laser beams.  It is 
also easy, and important,  to see that uneven nonlinear susceptibilities are present in all matter while the second-order (or 
even-order) susceptibility tensor  χ(2)  is strictly absent in a centrosymmetric system, molecule or crystal, within the 
electric dipole approximation.  This approximation is in fact the neglect of magnetic effects, usually validated in most 
cases by the fact that magnetic forces are extremely small compared to electric forces.  However in some, and very 
important phenomena, the neglect of magnetic effects is not allowed.  For example, to understand optical activity in 
molecules or crystals it is absolutely necessary to take into account magnetic interactions.  This is presented in Fig. 1 
where it is clearly seen that the interplay between electric dipole radiation and magnetic dipole radiation in a helical 
structure, the basis of all chiral structures, is resulting in the rotation of polarization since the magnetic dipole radiation is 
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the coefficients f, g and h are linear combinations of the components of the tensors χeee, χeem and χmee.  A detailed analysis 
gave for example: 
 
      g  ~  χxxz

eem   +   χ zxx
mee       (5)

 

 
A nonzero value for g, and rather large as experimentally measured, was a convincing indication of the presence of the 
“magnetic” tensors with components determined by symmetry.  The value of the coefficient g measured gave a magnetic 
contribution to the second-harmonic signal of the same order as the electric contribution, probably due to the partial 
suppression of the electric contribution as the result of the near centrosymmetry in the film. 
[A note of caution: the magnetic contributions as measured in the chiral polythiophene films cannot be directly linked to 
chirality.  Indeed measurements of second-harmonic generation from strongly chiral helicene films6 gave no indication of 
any magnetic contribution and the signal was largely defined by chiral tensor components in χeee ]  
 

 

FARADAY ROTATION EXPERIMENTS 

 
The oldest nonlinear optical effect – long before the laser-area and properly a nonlinear effect since an optical field is 
coupled to a magnetic field – was discovered by Faraday7, now known as Faraday rotation, i.e. the rotation of the plane 
of polarization of linearly polarized light due to magnetic field induced birefringence.  Faraday rotation is now 
commonly used in optical isolators and modulators.  The effect is completely described by the rotation angle θ of the 
plane of polarization and given by the simple equation  θ  =  VLB with V the Verdet constant, B the component of the 
magnetic field parallel to the light propagation direction and L the sample length.  This Verdet constant, a material 
constant, is usually obtained from the amount of polarization rotation and is wavelength dependent, decreasing strongly 
away from resonance.  Typically used materials for applications, e.g.Terbium Gallium Garnet (TGG), have a Verdet 
constant around 104 °/Tm at visible wavelengths. 

Guided by eq. 1, but now including magnetic interactions and a magnetic field at low frequency we write: 

 

             P(ω )  =  χ (1)  E(ω )  +  χ eemE(ω ) B(0)  =  χM E(ω )     (6) 

 
If we take properly account of the tensor symmetries and the Faraday rotation experiment with the low frequency field 
B(0) along the direction of light propagation (z-axis) and the incoming light linearly polarized along the x-axis it is 
straightforward to derive for the χM : 

 

     χM   =  
χxx χxyz

eemB

χ yxz
eemB χyy

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

      (7)

 

 

and, since we consider an isotropic medium we have χxx  =  χyy  =  χ.  Also, and again from symmetry considerations, 
χxyz

eem   =  − χyxz
eem   =  χm  and we write hence for the tensor χM : 
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     χM   =  
χ χmB

−χmB χ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

      (8)

 

 

But this is exactly the same tensor as used in the description of optical activity.8  Faraday rotation is therefore completely 
analogous to optical rotation from chiral samples, except that Faraday rotation is non-reciprocal due to the fact that the 
orientation of the magnetic field has opposite direction when the light beam is reversed and the rotation is adding up for 
Faraday rotation – canceled in the case of optical activity.   For Faraday rotation the off-diagonal elements in the tensor 
are dependent upon the field. 

It is now straightforward – using the description of circular polarized light – to deduce the relation between the Verdet 
constant, the angle of rotation and the nonlinear susceptibility component χm : 

 

V  =  4π 2

n0  λ
 i  χm   and   θ   =  4π 2

n0  λ
 i  χm⎛

⎝
⎜

⎞

⎠
⎟  L B

    (9)

 

 

As expected we see that the imaginary part of χm defines the value of the Verdet constant – and in a lossless medium χm  
(or χeem) is imaginary.  With these relations the quantumchemical calculation of the Verdet constant, at least for small 
molecules, becomes feasible.9 

The χm values, more properly the imaginary part of χxyz
eem   as measured for (chiral) polythiophene films are of the order 

of 0.4 pm/V.  Using these values, and neglecting dispersion, we estimate a Verdet constant for these polymer films of 
about 2 105 °/Tm, to be compared with 0.7 104 °/Tm (633 nm) for the inorganic material TGG.  It is very rewarding that 
measurements of the Faraday rotation of polymer films of polythiophenes gave indeed such surprising large values.  For 
example, a film of highly regioregular poly(3-octyloxythiophene) showed a Verdet constant of 2.5 106 °/Tm at 800 nm, 
still 106 °/Tm at the technologically important wavelength of 1550 nm.  This opens towards important applications, e.g. 
ultrasensitive magnetometers approaching the sensitivity of SQUID magnetometers, but at room temperature – such 
sensors are currently in development for magneto-encephalography (MEG) and could make this intricate medical 
technique routinely available.  However, for the application of these materials in devices we still have to further our 
knowledge and understanding of the Faraday rotation in these conjugated polymers.  First we have to elucidate the 
relation between the high Verdet constant and the regioregularity of the polythiophenes whereas we see that the Verdet 
constant is strongly dependent upon the regioregularity.  Another point of focus is the relation between the Faraday 
rotation and the structure of the polymer films, usually obtained by spincoating – it is also possible that regioregualrity 
and film structure are intricately related.   As an example of the critical role of the film structure the Faraday rotation in a 
blue film of poly(dioctylcyclopentadithiophene) was very large with a Verdet constant of V = 2.5 105 °/Tm (670 nm) 
after preparation of the film by spincoating, but fading slowly away over days with a concomitant change to a purple 
color.  This is presumably due the formation of a new supramolecular structure, or crystallization although no melting is 
seen in DSC, resulting in polymer chain interactions unfavourable for Faraday rotation.  This hypothesis is supported by 
measurements of the Faraday rotation of poly(3-octylthiophene) in solutions (0.25 mg/ml) of mixtures of good and poor 
solvents.  In THF, a good solvent for these polymers, where the polymer chains are not aggregating, a Faraday rotation of 
0.35°/T is measured in a sample cell of 1 mm.  This would be equivalent to about 105 °/Tm for the (solid) pure poly(3-
octylthiophene if no chain interactions are assumed.  Upon changing the solvent gradually to a mixture of THF and 
methanol, a poor solvent wherein the polymer chains show aggregation, the Faraday rotation diminish markedly, albeit in 
a rather, poorly understood, complex way – see Fig. 2. 
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A very difficult problem in the synthesis is the strong competition with interchain coupling requiring synthesis at 
(extremely) high dilution.  Moreover the separation of the macrocyles from linear polymers – both having comparable 
chemical properties – is as yet an unresolved issue.  
 
 
 

CONCLUSION 
 
 
The very large Faraday rotation, as well as the magnetic hysteresis at cryogenic temperatures, observed in regioregular 
poly(3-alkylthiophene)s are tentatively related to the cyclic structures present in these polymers as seen by AFM.  A 
program is initiated on the investigation of macrocycles of poly(3-alkylthiopene)s, both theoretical (simulations and 
quantumchemical calculation) and experimental, to assess the possibility of persistent currents in such rings analogous to 
persistent currents observed in mesoscopic and nanoscopic metal rings. 
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