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ABSTRACT 
The multi-shot approach in SLIM requires reliable, synchronous, and parallel operation of three 

independent hardware devices – not meeting these challenges results in degraded phase and slow acquisition speeds, 
narrowing applications to holistic statements about complex phenomena. The relative youth of quantitative imaging 
and the lack of ready-made commercial hardware and tools further compounds the problem as Higher level 
programming languages result in inflexible, experiment specific instruments limited by ill-fitting computational 
modules, resulting in a palpable chasm between promised and realized hardware performance. Furthermore, general 
unfamiliarity with intricacies such as background calibration, objective lens attenuation, along with spatial light 
modular alignment, makes successful measurements difficult for the inattentive or uninitiated. This poses an 
immediate challenge for moving our techniques beyond the lab to biologically oriented collaborators and clinical 
practitioners. 

To meet these challenges, we present our new Quantitative Phase Imaging pipeline, with improved 
instrument performance, friendly user interface and robust data processing features, enabling us to acquire and 
catalog clinical datasets hundreds of gigapixels in size. 

1. INTRODUCTION
The quantitative phase image represents a per-pixel map of the optical path length across the specimen,

providing intrinsic contrast from the structure of the object. By decoupling the image from the properties of the 
microscope, quantitative phase imaging techniques provide reproducible diagnostic markers well suited for clinical 
applications such as blood screening or cancer diagnosis [1-5]. 

In Spatial Light Interference Microscopy (SLIM [6]) the relative phase shift between scattered and 
transmitted light is manipulated by way of a spatial light modulator (SLM). In our implementation, each SLIM 
image is reconstructed from four ‘phase contrast’ frames acquired at 90 degree offsets between scattered and 
transmitted light, with the relative offset between the two components used to reconstruct a per-pixel map of the 
optical path across the specimen. Among the advantages of phase shifting interferometry[7, 8] is the efficient use of 
camera bandwidth when compared to techniques where the image is retrieved by Fourier demodulation[9], 
necessitating significantly more pixels to properly sample the modulated image.  

The SLIM hardware sits at the output port of a conventional white light microscope with the SLM 
conjugate to phase ring of the objective. This design is particular well paired with fluorescence microscopy as the 
low intensity fluorescent signal moves through the hardware relatively unperturbed when compared to diffraction 
gratings[10], lenslet arrays [11], and multipath setups[12-14] that split the weak emitted light beyond the sensitivity 
of the camera. 

2. INSTRUMENTATION
The acquisition of a SLIM frame begins by writing a phase mask onto the SLM. Like a conventional liquid 

crystal display, the response time for a phase shifting SLM depends on the values written, and is on the order of 10 
ms [15]. Nevertheless, to achieve this performance, in the case of a computer display connected SLM device, the 
pixels must actually switch on demand. In our system, we run a dedicated OpenGL render context with a condition 

Quantitative Phase Imaging, edited by Gabriel Popescu, YongKeun Park, Proc. of SPIE Vol. 9336, 
93360Z · © 2015 SPIE · CCC code: 1605-7422/15/$18 · doi: 10.1117/12.2080212

Proc. of SPIE Vol. 9336  93360Z-1



 

 

variable releasing the buffer, effectively implementing a software trigger (Code 1). We note that by creating the 
context from scratch, we can disable the post-processing and motion blurring that is desirable for video games and 
word processing applications, but otherwise result in an increase per-frame latency in the phase modulating 
applications.  

Code 1:  Synchronous pixel changing on a DVI SLM provides predictable software triggering. 
//GL thread 
while (!glDone) 
{ 
 { 
  std::unique_lock<std::mutex> lk(m); 
  cv.wait(lk, [&]{return ping; }); 
 } 
 ping = false; 
 render() 
 SwapBuffers(g_hDC); // on gdi 
 { 
  std::lock_guard<std::mutex> lk(m); 
  pong = true; 
 } 
 cv.notify_one(); 
} 
 
//From  control thread 
frame = framenum; 
{ 
 std::lock_guard<std::mutex> lk(m); 
 ping = true; 
} 
cv.notify_one(); 
{ 
 std::unique_lock<std::mutex> lk(m); 
 cv.wait(lk, [&]{return pong; }); 
 pong = false; 
} 
By default, there is a few millisecond latency between notifying a condition variable and returning control to the 
associated thread (Code 2). On a Windows platform, Multimedia Timers provide a workaround to achieve response 
times on the order of Windows NT thread quanta, achieving near optimal response time, reducing jitter due to 
multithreading to under a millisecond[16]: 

Code 2: Multimedia timers improve condition variable response times. 
struct TimePriority 
{ 
 TimePriority() 
 {// should only be instantiated once per thread 
  auto err = timeBeginPeriod(p); 
  assert(err == TIMERR_NOERROR); 
 } 
 ~TimePriority() 
 { 
  timeEndPeriod(p); 
 } 
 static const int p = 1; 
}; 
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Although hardware camera triggering can be used for time critical acquisitions, instead we opt to use software based 
camera triggering as it enables us to implicitly adjust for variable image processing time, in particular for in the live 
acquisition mode. We perform the software triggering and datacopy operations on separate threads, enabling the 
camera API to respond as data becomes available. Moreover, by decoupling triggering from datacopy we can reduce 
camera aperture jitter, as triggering is usually immediate while waiting for the data to arrive is subject to other 
factors such as the computational load.  

Writing data to a hard disk at our acquisition speeds is challenging because, even with the fastest solid state drives, 
the archived speed can vary as a function of capacity, leading to the so-called “SSD write cliff”[17]. Our 
implementation addresses this problem by performing file writing asynchronously reserving a memory buffer 
corresponding to the computer’s storage capacity letting us briefly exceed hard disk capacity. Further performance 
increases come from writing the files as binary data and avoiding the operating systems internal file buffering (Code 
3). 

Code 3: IO created without buffering achieves near theoretical performance. 
auto hFile = CreateFileA( 
 name, GENERIC_WRITE, 0, NULL, CREATE_NEW, 
 FILE_FLAG_WRITE_THROUGH | FILE_FLAG_NO_BUFFERING, 
 NULL); 
As the mechanical motion of the microscope takes a variable amount of time to complete, tasks such as opening a 
shutter or moving the stage require synchronous operation where control returns to the program upon completion. 
Nevertheless, it is desirable to do such tasks in parallel, for example modulating the SLM while moving to a new 
position or switch to a reflection fluorescence filter cube while turning off the transmitted illumination. We group 
such task blocks by launching them asynchronously waiting for their completion through the `std::future` 
framework. Further, the destruction of purpose built objects ensures a minimal execution time effectively converting 
portions of the code from asynchronous to synchronous ensuring predictable computation times(Code 4). With these 
two techniques, the total time becomes the maximum of each step rather than sum of each step - i.e., 
max(slm,microscope) rather than slm+microscope - and is enforced implicitly without any a-priori knowledge of the 
execution time of the constituent elements. 

Code 4: the `TimeGuarantee` object ensures a minimum execution time of a particular section of code. 
struct TimeGuarantee 
{ 
   ... 
 static inline void fence() 
 { 
  std::atomic_signal_fence(std::memory_order_seq_cst); 
 } 
 TimeGuarantee(unsigned int Miliseconds) : milis(Miliseconds), start(timestamp()) 
 { 
  fence();//don't optomize out 
 } 
 ~TimeGuarantee() 
 { 
  fence(); 
  auto left = milis - (timestamp() - start); 
  if (left>0) 
  { 
   _sleep(left);// more precise compared to std:: 
  } 
 } 
}; 
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 TimeGuarantee t(slm_stability); 
 slm->setFrame(slm_pattern);//0ms, asynchronous 
 camera->setExposure(expo);//1ms worst case 
 auto future1 = camera->applySettings(chan.config);//3 seconds worst case 
  auto future2 = scope->moveTo(pos);//90 ms for z, 130 ms xy  
 future1.wait();//MSVC futures don’t wait on destruction 
 future2.wait(); 
} 

3. USER INTERFACE 
To present the SLIM image as a unified contrast setting, in the same way as Bright Field or Phase Contrast, we use 
CUDA and OpenGL to perform real-time rendering on a separate drawing thread. Passive mechanisms, such as 
write-combined memory were considered, but not used due conflicts with OEM camera hardware. Instead, we 
perform the data transfer on a second thread achieving a similar effect, where the next frame loads while the current 
one is processed. In total, the live mode runs three threads: one for triggering and data upload, one for waiting on 
new data, and one for rendering the live image (Figure 1). 

Figure 1: Live SLIM Image, dim illumination 

 
The acquisition process reads a list of acquisition events, with each event indexing the corresponding channel 
information. Information stored in each channel includes items such as exposure time, along with QPI specific 
parameters like the background illumination (Figure 2). To maximize code reusability, OEM SDK are hidden in a 
particular implementation of generic devices – i.e. OspreyCamera implements Camera. The acquisition list enables 
us to decouple the graphical user interface (Figure 3) from the acquisition process, greatly improving code 
reusability, as only the list generation function needs to be changed when modifying the user interface or adding 
features to the acquisition process. The principle downside of such a structure being the need to use synchronization 
primitives when changing the list during acquisition, although the persistence of well-defined acquisition events 
facilitates an error correction procedure where a failed event can be easily re-attempted.  

Code 5: Two methods for implicitly overlapping execution of synchrnous ( 
{ 
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Figure 2: Acquisition data structure 

 

Figure 3: “Total Control” interface for generating acquisition lists. Example, multi-ROI acquisition shown. 

 

Understanding that a clinical slide scanner designed for use by medical professionals must digitize samples whose 
`surface of best focus` is non-uniform, we incorporate a mechanism to set focus points across the surface of the 
sample (figure 4). To handle arbitrary locations we generate a Delaunay triangulation and sample it when generating 
our acquisition list[18]. A slide scan, as would be used to digitize a peripheral blood smear or frozen biopsy section, 
can use this surface `as is` or take it as a hint for the automated focus system as is addressed in our separate work 
[19]. 

Events 
Type of Action 

Computation Result

Position 

Stage Timeout 

After Capture Delay

Channel 

Channels 

SLM Stability Time

Exposure

Gain 

ROI 

Readout Speed

Microscope Channel

Objective Index 
(unused) 

Camera SDK 

Camera SDK 

Number of Patterns

Compute Settings

Actions 
Capture 
Computed Focus 
Fill Focus 
Fill Focus Adjusting 
Whole Mesh Name  

(time, roi, number, pattern) 
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4. ARCHIVAL STORAGE 

A typical acquisition results in tens of thousands of images, and presents a computational challenge to existing 
image assembly tools. These tools are often designed for general image alignment tasks such as merging tilings with 
arbitrary positions or compensating for image warping resulting in producer-consumer schemes with hard to predict 
threading. For example, some stitching programs are able to align a tile with a variable number of neighbors, leading 
to parallelism schemes where too few or too many threads are invoked. Instead, we optimize our code for regularly 
spaced mosaic tiles and rigid transformations[20] facilitating predictable overlap between disk reading and 
computation, resulting in a code that aligns images comparable to hard disk read speeds. The resulting list is 
converted into a format compatible with tile based online image viewers, ready for inspection by a medical 
professional [21, 22]. 

The intrinsic contrast and quantitative nature of QPI techniques make them well posited for archival storage, 
because phase, unlike intensity, does not depend on the properties of the instrument but rather only on the actual 
specimen. To this end, we demonstrate a computational workflow designed to scan a large number slides, processing 
them in batch and storing them for easy online access. Specifically, a k-means clustering on a down-sampled version 
identifies the pixels as belonging to a cores and then a second k-means clustering is used to assign the labels (Figure 
5) [23].  

Figure 4: Slide Scanner interface displaying focus plain. 
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