
C++ software integration for a high-throughput phase imaging
platform

Mikhail E. Kandel1*, Zelun Luo1, Kevin Han1, Gabriel Popescu1
1Quantitative Light Imaging Laboratory, Department of Electrical and Computer

Engineering, Beckman Institute of Advanced Science and Technology, University of
Illinois at Urbana-Champaign, Urbana, IL 61801, USA

*Corresponding author: kandel3@illinois.edu

ABSTRACT
The multi-shot approach in SLIM requires reliable, synchronous, and parallel operation of three

independent hardware devices – not meeting these challenges results in degraded phase and slow acquisition speeds,
narrowing applications to holistic statements about complex phenomena. The relative youth of quantitative imaging
and the lack of ready-made commercial hardware and tools further compounds the problem as Higher level
programming languages result in inflexible, experiment specific instruments limited by ill-fitting computational
modules, resulting in a palpable chasm between promised and realized hardware performance. Furthermore, general
unfamiliarity with intricacies such as background calibration, objective lens attenuation, along with spatial light
modular alignment, makes successful measurements difficult for the inattentive or uninitiated. This poses an
immediate challenge for moving our techniques beyond the lab to biologically oriented collaborators and clinical
practitioners.

To meet these challenges, we present our new Quantitative Phase Imaging pipeline, with improved
instrument performance, friendly user interface and robust data processing features, enabling us to acquire and
catalog clinical datasets hundreds of gigapixels in size.

1. INTRODUCTION
The quantitative phase image represents a per-pixel map of the optical path length across the specimen,

providing intrinsic contrast from the structure of the object. By decoupling the image from the properties of the
microscope, quantitative phase imaging techniques provide reproducible diagnostic markers well suited for clinical
applications such as blood screening or cancer diagnosis [1-5].

In Spatial Light Interference Microscopy (SLIM [6]) the relative phase shift between scattered and
transmitted light is manipulated by way of a spatial light modulator (SLM). In our implementation, each SLIM
image is reconstructed from four ‘phase contrast’ frames acquired at 90 degree offsets between scattered and
transmitted light, with the relative offset between the two components used to reconstruct a per-pixel map of the
optical path across the specimen. Among the advantages of phase shifting interferometry[7, 8] is the efficient use of
camera bandwidth when compared to techniques where the image is retrieved by Fourier demodulation[9],
necessitating significantly more pixels to properly sample the modulated image.

The SLIM hardware sits at the output port of a conventional white light microscope with the SLM
conjugate to phase ring of the objective. This design is particular well paired with fluorescence microscopy as the
low intensity fluorescent signal moves through the hardware relatively unperturbed when compared to diffraction
gratings[10], lenslet arrays [11], and multipath setups[12-14] that split the weak emitted light beyond the sensitivity
of the camera.

2. INSTRUMENTATION
The acquisition of a SLIM frame begins by writing a phase mask onto the SLM. Like a conventional liquid

crystal display, the response time for a phase shifting SLM depends on the values written, and is on the order of 10
ms [15]. Nevertheless, to achieve this performance, in the case of a computer display connected SLM device, the
pixels must actually switch on demand. In our system, we run a dedicated OpenGL render context with a condition

Quantitative Phase Imaging, edited by Gabriel Popescu, YongKeun Park, Proc. of SPIE Vol. 9336,
93360Z · © 2015 SPIE · CCC code: 1605-7422/15/$18 · doi: 10.1117/12.2080212

Proc. of SPIE Vol. 9336 93360Z-1

variable releasing the buffer, effectively implementing a software trigger (Code 1). We note that by creating the
context from scratch, we can disable the post-processing and motion blurring that is desirable for video games and
word processing applications, but otherwise result in an increase per-frame latency in the phase modulating
applications.

Code 1: Synchronous pixel changing on a DVI SLM provides predictable software triggering.
//GL thread
while (!glDone)
{
 {
 std::unique_lock<std::mutex> lk(m);
 cv.wait(lk, [&]{return ping; });
 }
 ping = false;
 render()
 SwapBuffers(g_hDC); // on gdi
 {
 std::lock_guard<std::mutex> lk(m);
 pong = true;
 }
 cv.notify_one();
}

//From control thread
frame = framenum;
{
 std::lock_guard<std::mutex> lk(m);
 ping = true;
}
cv.notify_one();
{
 std::unique_lock<std::mutex> lk(m);
 cv.wait(lk, [&]{return pong; });
 pong = false;
}
By default, there is a few millisecond latency between notifying a condition variable and returning control to the
associated thread (Code 2). On a Windows platform, Multimedia Timers provide a workaround to achieve response
times on the order of Windows NT thread quanta, achieving near optimal response time, reducing jitter due to
multithreading to under a millisecond[16]:

Code 2: Multimedia timers improve condition variable response times.
struct TimePriority
{
 TimePriority()
 {// should only be instantiated once per thread
 auto err = timeBeginPeriod(p);
 assert(err == TIMERR_NOERROR);
 }
 ~TimePriority()
 {
 timeEndPeriod(p);
 }
 static const int p = 1;
};

Proc. of SPIE Vol. 9336 93360Z-2

Although hardware camera triggering can be used for time critical acquisitions, instead we opt to use software based
camera triggering as it enables us to implicitly adjust for variable image processing time, in particular for in the live
acquisition mode. We perform the software triggering and datacopy operations on separate threads, enabling the
camera API to respond as data becomes available. Moreover, by decoupling triggering from datacopy we can reduce
camera aperture jitter, as triggering is usually immediate while waiting for the data to arrive is subject to other
factors such as the computational load.

Writing data to a hard disk at our acquisition speeds is challenging because, even with the fastest solid state drives,
the archived speed can vary as a function of capacity, leading to the so-called “SSD write cliff”[17]. Our
implementation addresses this problem by performing file writing asynchronously reserving a memory buffer
corresponding to the computer’s storage capacity letting us briefly exceed hard disk capacity. Further performance
increases come from writing the files as binary data and avoiding the operating systems internal file buffering (Code
3).

Code 3: IO created without buffering achieves near theoretical performance.
auto hFile = CreateFileA(
 name, GENERIC_WRITE, 0, NULL, CREATE_NEW,
 FILE_FLAG_WRITE_THROUGH | FILE_FLAG_NO_BUFFERING,
 NULL);
As the mechanical motion of the microscope takes a variable amount of time to complete, tasks such as opening a
shutter or moving the stage require synchronous operation where control returns to the program upon completion.
Nevertheless, it is desirable to do such tasks in parallel, for example modulating the SLM while moving to a new
position or switch to a reflection fluorescence filter cube while turning off the transmitted illumination. We group
such task blocks by launching them asynchronously waiting for their completion through the `std::future`
framework. Further, the destruction of purpose built objects ensures a minimal execution time effectively converting
portions of the code from asynchronous to synchronous ensuring predictable computation times(Code 4). With these
two techniques, the total time becomes the maximum of each step rather than sum of each step - i.e.,
max(slm,microscope) rather than slm+microscope - and is enforced implicitly without any a-priori knowledge of the
execution time of the constituent elements.

Code 4: the `TimeGuarantee` object ensures a minimum execution time of a particular section of code.
struct TimeGuarantee
{
 ...
 static inline void fence()
 {
 std::atomic_signal_fence(std::memory_order_seq_cst);
 }
 TimeGuarantee(unsigned int Miliseconds) : milis(Miliseconds), start(timestamp())
 {
 fence();//don't optomize out
 }
 ~TimeGuarantee()
 {
 fence();
 auto left = milis - (timestamp() - start);
 if (left>0)
 {
 _sleep(left);// more precise compared to std::
 }
 }
};

Proc. of SPIE Vol. 9336 93360Z-3

0 .1 ®

Hold

Quit

Phase I-I

m: -0.01
. v: 9.04..

f11 I2) 3

I-0.30I Loso I

12064x2048 M
SLM 10

I 4)

I CI

lix1 IYI

Exp.

6

© ©1]l I

10 I set

W«kspnce

0

IC:/

0.00 I I 0.00 I

li sum II
Cs
IE©©

HPI

Il

I
o.00

I

Ramer

Tote) control

I -1.00 I
-1.00 I

-1.00 1

Llve Dsp aÿ

 TimeGuarantee t(slm_stability);
 slm->setFrame(slm_pattern);//0ms, asynchronous
 camera->setExposure(expo);//1ms worst case
 auto future1 = camera->applySettings(chan.config);//3 seconds worst case
 auto future2 = scope->moveTo(pos);//90 ms for z, 130 ms xy
 future1.wait();//MSVC futures don’t wait on destruction
 future2.wait();
}

3. USER INTERFACE
To present the SLIM image as a unified contrast setting, in the same way as Bright Field or Phase Contrast, we use
CUDA and OpenGL to perform real-time rendering on a separate drawing thread. Passive mechanisms, such as
write-combined memory were considered, but not used due conflicts with OEM camera hardware. Instead, we
perform the data transfer on a second thread achieving a similar effect, where the next frame loads while the current
one is processed. In total, the live mode runs three threads: one for triggering and data upload, one for waiting on
new data, and one for rendering the live image (Figure 1).

Figure 1: Live SLIM Image, dim illumination

The acquisition process reads a list of acquisition events, with each event indexing the corresponding channel
information. Information stored in each channel includes items such as exposure time, along with QPI specific
parameters like the background illumination (Figure 2). To maximize code reusability, OEM SDK are hidden in a
particular implementation of generic devices – i.e. OspreyCamera implements Camera. The acquisition list enables
us to decouple the graphical user interface (Figure 3) from the acquisition process, greatly improving code
reusability, as only the list generation function needs to be changed when modifying the user interface or adding
features to the acquisition process. The principle downside of such a structure being the need to use synchronization
primitives when changing the list during acquisition, although the persistence of well-defined acquisition events
facilitates an error correction procedure where a failed event can be easily re-attempted.

Code 5: Two methods for implicitly overlapping execution of synchrnous (
{

Proc. of SPIE Vol. 9336 93360Z-4

I i

Acquisiton

Acquire

MITT I

2566 Illy
Start areal

01

lil

Memos
Take6aßyountl

0Pr
0 Centel

%un Yun 2 u Cohn Rows. r

0 250 250 0

Mel

k:A/aMoshe wXl

Name

0 None

SLM

30

FXP

10

NOT

00

Pals

1

Comp.

0

1 SLIM 30 10 t0 0 0

2 FITC 30 10 t0 1 0

3 Slp,Filc 30 10 00 1 0

..55 II

III¡Maned.,

I

I rm. I I
Se[.VZ

I I
OTTO

I

m II II wm I

Figure 2: Acquisition data structure

Figure 3: “Total Control” interface for generating acquisition lists. Example, multi-ROI acquisition shown.

Understanding that a clinical slide scanner designed for use by medical professionals must digitize samples whose
`surface of best focus` is non-uniform, we incorporate a mechanism to set focus points across the surface of the
sample (figure 4). To handle arbitrary locations we generate a Delaunay triangulation and sample it when generating
our acquisition list[18]. A slide scan, as would be used to digitize a peripheral blood smear or frozen biopsy section,
can use this surface `as is` or take it as a hint for the automated focus system as is addressed in our separate work
[19].

Events
Type of Action

Computation Result

Position

Stage Timeout

After Capture Delay

Channel

Channels

SLM Stability Time

Exposure

Gain

ROI

Readout Speed

Microscope Channel

Objective Index
(unused)

Camera SDK

Camera SDK

Number of Patterns

Compute Settings

Actions
Capture
Computed Focus
Fill Focus
Fill Focus Adjusting
Whole Mesh Name

(time, roi, number, pattern)

Proc. of SPIE Vol. 9336 93360Z-5

S de Scanner

1 00 171111. HI
I

non

Fss 1300 .nn 17111n0 d1 R.eda,ma.a

Raba 1.30 IRA&ImnAMP
1

Innnfa.

Synchronized
w,d.a 1 m 1 ea 50 ü intende

551aa aFRI la I I la Had 75 I Pages 15 Ill 00 1

San line L0

nm,=9e 1 .s®
1 I Gn

Charnel I=

centerview

shAwa,

set,.

2

o 22 -12Th -i fart.

1

2 22500 12000

3 -22500 12000 -1 fame

0 0 e fame

5

©

Foos

POLiedbmlsha7zakbpRnÌ ..mll hnel

Tools

® ® Is6It
Ra-ges

I
Reaono

J

WI sefn- J

1111112 Iinser5m
ove(F)

J

4. ARCHIVAL STORAGE

A typical acquisition results in tens of thousands of images, and presents a computational challenge to existing
image assembly tools. These tools are often designed for general image alignment tasks such as merging tilings with
arbitrary positions or compensating for image warping resulting in producer-consumer schemes with hard to predict
threading. For example, some stitching programs are able to align a tile with a variable number of neighbors, leading
to parallelism schemes where too few or too many threads are invoked. Instead, we optimize our code for regularly
spaced mosaic tiles and rigid transformations[20] facilitating predictable overlap between disk reading and
computation, resulting in a code that aligns images comparable to hard disk read speeds. The resulting list is
converted into a format compatible with tile based online image viewers, ready for inspection by a medical
professional [21, 22].

The intrinsic contrast and quantitative nature of QPI techniques make them well posited for archival storage,
because phase, unlike intensity, does not depend on the properties of the instrument but rather only on the actual
specimen. To this end, we demonstrate a computational workflow designed to scan a large number slides, processing
them in batch and storing them for easy online access. Specifically, a k-means clustering on a down-sampled version
identifies the pixels as belonging to a cores and then a second k-means clustering is used to assign the labels (Figure
5) [23].

Figure 4: Slide Scanner interface displaying focus plain.

Proc. of SPIE Vol. 9336 93360Z-6

C
E V

mC
E

C
E

C
E

®
olE

 M
 ®

m®

S

3
31m

5. S
Our design
interferom
addition to
moving dir

REFERE
[1] T.

of
[2] Z.

Pa
[3] M

th
13

[4] M
p

[5] H
im

[6] Z.
19

[7] H
liq

[8] W
q

[9] M
co
72

[10] G
st

UMMARY
n presents spati
etric contrast t

o providing a re
rectly from the

ENCES
. Kim, S. Sridh
f human biop
. Wang, G. Po
aper),” Journ

M. Hunter, V.
he born appro
38102 (2006)

M. Mir, K. Tang
hase and amp
. Pham, B. Bh

maging,” PLoS
. Wang, L. Mi
9(2), 1016-10
. Kadono, M.
quid-crystal p

W. S. Rockwar
uadrature mi

M. Takeda, H.
omputer-base
2(1), 156-160
. Popescu, T.

tructure and d

ial light interfe
echnique into a
eal time image,
e scanner to a w

haran, A. Kajd
psies,” Appl. O
opescu, K. V. T
al of Biomed
Backman, G.
oximation: a n
).
gella, and G.
plitude micro
haduri, K. Tan
S ONE, 8(2), e
llet, M. Mir e

026 (2011).
 Ogusu, and S

phase modula
rd, A. L. Thom
icroscopy,” A
Ina, and S. Ko
ed topograph

0 (1982).
Ikeda, R. R. D

dynamics,” O

erence microsco
an image well
, our pipeline r

web based imag

dacsy-Balla et
Opt., 52(1), A9
Tangella et al
ical Optics, 16
Popescu et a
new model fo

Popescu, “Blo
oscopy,” Biom
ngela et al., “R
e55676 (2013
et al., “Spatial

S. Toyooka, “
ator,” Optics C

mas, B. Zhao e
pplied Optics
obayashi, “Fo
hy and interfe

Dasari et al., “
Optics letters,

opy in a user-f
suited for use b

represents a rea
ge viewer.

t al., “Gradien
92-A96 (2013
l., “Tissue refr
6(11), 116017
l., “Tissue sel
or precancer

ood testing at
medical Optics
Real time bloo
).
 light interfer

Phase shifting
Communicati
t al., “Quanti

s, 47(10), 168
ourier-transfo
erometry,” Jo

“Diffraction p
31(6), 775-77

friendly manne
by biologists a
alization of clo

nt field micros
3).
ractive index
7 (2011).
f-affinity and
detection,” P

t the single ce
s Express, 2(1
od testing usi

rence microsc

g common pa
ions, 110(3–4
tative phase
4-1696 (2008

orm method o
urnal of the O

phase microsc
77 (2006).

er, unifying a m
and clinical pra
oud pathology,

scopy for labe

as marker of

d polarized lig
Physical review

ell level using
12), 3259-326
ing quantitati

copy (SLIM),”

ath interferom
4), 391-400 (1
measuremen

8).
of fringe-patte
Optical Societ

copy for quan

multistep
actitioners. In
with images

el-free diagno

f disease (Jou

ht scattering
w letters, 97(

g quantitative
66 (2011).
ive phase

 Optics Expre

meter using a
1994).
nts using optic

ern analysis f
ty of America

ntifying cell

osis

rnal

in
13),

e

ess,

a

cal

for
a,

Figure 5: Stitched and Labeled Microbiopsy Array

Proc. of SPIE Vol. 9336 93360Z-7

[13] E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative
phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Applied
Optics, 38(34), 6994-7001 (1999).

[14] G. Popescu, T. Ikeda, C. A. Best et al., “Erythrocyte structure and dynamics quantified by Hilbert
phase microscopy,” Journal of biomedical optics, 10, 060503 (2005).

[15] G. Thalhammer, R. W. Bowman, G. D. Love et al., “Speeding up liquid crystal SLMs using
overdrive with phase change reduction,” Optics Express, 21(2), 1779-1797 (2013).

[16] Microsoft, [Multimedia Timers].
[17] C. Mellor, [HP and Violin build Oracle Exadata killer] The Register, (2011).
[18] “Computational Geometry Algorithms Library ”.
[19] B. B. Mikhail E. Kandel, Gabriel Popescu, " An efficient autofocusing scheme for quantitative

phase imaging " Quantitative Phase Imaging.
[20] E. De Castro, and C. Morandi, “Registration of Translated and Rotated Images Using Finite

Fourier Transforms,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, PAMI-
9(5), 700-703 (1987).

[21] I. Zoomify, [Zoomify].
[22] S. Saalfeld, A. Cardona, V. Hartenstein et al., “CATMAID: collaborative annotation toolkit for

massive amounts of image data,” Bioinformatics, 25(15), 1984-1986 (2009).
[23] OpenCV, [Clustering].

[12] P. Kolman, andd R. Chmelík, “Coherence-controlled hoolographic microscope,” OOptics Expresss,
188(21), 21990--22003 (20100).

[11] P. Bon, G. Mauucort, B. Watttellier et al., ““Quadriwave lateral shearring interferommetry for
quantitative phhase microscopy of living ccells,” Optics Express, 17(115), 13080-133094 (2009).

Proc. of SPIE Vol. 9336 93360Z-8

