
 

 

Multi-scale theory-assisted, nano-engineering of plasmonic-organic 
hybrid electro-optic device performance  

Delwin L. Eldera, Lewis E. Johnsona, Andreas F. Tillacka,c, Bruce H. Robinsona , Christian Haffnerb, 
Wolfgang Henib,  Claudia Hoessbacherb, Yuriy Fedoryshynb, Yannick Salaminb, Benedikt 
Baeuerleb, Arne Jostenb, Masafumi Ayatab, Ueli Kochb, Juerg Leutholdb, Larry R. Dalton*a 

aDept. of Chemistry, University of Washington, Seattle, WA, USA 98195-1700; bETH Zurich, 
Institute of Electromagnetic Fields (IEF), Zurich, Switzerland; cCenter for Computational Sciences, 

Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6008, Oak Ridge, TN 
37831 

ABSTRACT  

Multi-scale (correlated quantum and statistical mechanics) modeling methods have been advanced and employed to 
guide the improvement of organic electro-optic (OEO) materials, including by analyzing electric field poling induced 
electro-optic activity in nanoscopic plasmonic-organic hybrid (POH) waveguide devices.  The analysis of in-device 
electro-optic activity emphasizes the importance of considering both the details of intermolecular interactions within 
organic electro-optic materials and interactions at interfaces between OEO materials and device architectures.  Dramatic 
improvement in electro-optic device performance--including voltage-length performance, bandwidth, energy efficiency, 
and lower optical losses have been realized.  These improvements are critical to applications in telecommunications, 
computing, sensor technology, and metrology.  Multi-scale modeling methods illustrate the complexity of improving the 
electro-optic activity of organic materials, including the necessity of considering the trade-off between improving 
poling-induced acentric order through chromophore modification and the reduction of chromophore number density 
associated with such modification.  Computational simulations also emphasize the importance of developing 
chromophore modifications that serve multiple purposes including matrix hardening for enhanced thermal and 
photochemical stability, control of matrix dimensionality, influence on material viscoelasticity, improvement of 
chromophore molecular hyperpolarizability, control of material dielectric permittivity and index of refraction properties, 
and control of material conductance.  Consideration of new device architectures is critical to the implementation of 
chipscale integration of electronics and photonics and achieving the high bandwidths for applications such as next 
generation (e.g., 5G) telecommunications.  
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1. INTRODUCTION  
Plasmonic-organic hybrid (POH) technology affords a unique opportunity with respect to achieving high bandwidth 
electro-optic performance, e.g., single channel bandwidths on the order, of or even exceeding, 1 THz.  Such high 
bandwidths are possible due to the femtosecond response times of organic electro-optic (OEO) materials coupled with 
the short (femtosecond) RC time constants associated with plasmonic devices.  OEO materials permit electro-optic (EO) 
modulation via the Pockels effect and thus the response time to time varying electric fields is the phase relaxation time 
of the conjugated π-electron system.  Exploiting this fast response in THz generation and detection, all-optical 
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Control of the glass transition temperature is important for optimizing poling efficiency and lattice hardening when using 
thermally-activated crosslinking reactions.1 Ideally, chromophore modification should serve multiple purposes including 
disrupting formation of centrosymmetric structures via steric hindrance, control of matrix dimensionality, improvement 
of viscoelastic properties, and facilitation of lattice hardening.  Coarse-grained simulations have illustrated the 
importance of chromophore symmetry with respect to optimizing poling efficiency; straight chromophore cores are 
predicted to yield better electro-optic activity than bent (nonlinear) chromophore cores with similar amounts of 
functionalization.  Of course, not all theoretically considered chromophore structures can be synthesized so synthetic 
expertise is a critical component in contemplating putative structures.  Also, factors other than intermolecular 
electrostatics can impact poling efficiency.  For example, the conductance of OEO materials, if too high, can reduce the 
effective poling field felt by the chromophores during poling and conductance can depend on chromophore modification 
in ways that are not easily simulated. 

The details of device architectures can influence poling efficiency.  The most dramatic (recently observed and simulated) 
effect is the dependence of electro-optic activity on the width of plasmonic-organic hybrid and silicon-organic hybrid 
waveguides.6,16 If material conductance varies with waveguide width, changing conductance could also contribute to the 
experimentally observed behavior; however, simulations executed to the present suggest that the observed behavior is 
strongly influenced by electrostatic interactions at the interface between OEO materials and device electrodes.  Indeed, 
the attraction to the electrodes by OEO chromophores may produce increased centrosymmetric ordering of 
chromophores near the electrode surfaces.  This interaction appears to cause chromophores to orient along the electrode 
surfaces and normal to the poling field direction.  Preliminary simulations of chromophores in nanoscale waveguides 
also appear to suggest that the transition from such chromophore orientation to bulk orientation behavior as a function of 
distance from the waveguide walls occurs abruptly rather than uniformly as distance from the electrode surface is 
increased.  Obviously, more careful examination of the waveguide width dependence is required, as is further theoretical 
examination of chromophore cooperativity; however, the current studies already emphasize the importance of 
considering interfacial interactions in optimizing the performance of devices with nanoscopic waveguide widths.  The 
results also suggest the possibility of reconsidering the utility of sequential synthesis processing protocols1 as covalent 
modification of surfaces and use of covalent bonds to influence chromophore assembly clearly has potential for 
improving chromophore order in very thin films.  It should also be kept in mind that it is already clear that the details of 
chromophore structure can influence interfacial interactions; for example, while JRD1 affords the lowest UπL values in 
films with widths greater than 150 nm, DLD164 yields the smallest values for the narrowest waveguide widths.16 This is, 
of course, not unexpected from a consideration of their structures shown in Fig. 1; however, there may be even more 
effective modified chromophore structures than DLD164. 

A variety of device structures have been examined recently. 6,17-28 These range from phase, Mach Zehnder amplitude, and 
In-Phase Quadrature (IQ) modulators to various resonant antenna and ring resonator structures.  100 GBd operation of a 
plasmonic intensity modulator has been demonstrated with a bandwidth of > 170 GHz.22 Plasmonic photonic modulators 
(PPM) have been integrated into resonant antenna structures (e.g., a four-clover leaf shaped antenna), where the antenna 
arms are directly connected to the plasmonic slot of the PPM.23 The resonance enhances the voltage drop across the 
plasmonic slot resulting in a field strength increase on the order of 92,000.  Direct conversion of free-space wireless 
radio signals to the optical domain is accomplished without the use of electronics.  Integration of multiple PPMs on a 
chip permitted fabrication of a plasmonic beam forming array for 60 GHz beamforming.  Higher resonant frequencies 
can be accessed by downscaling resonator dimensions. 

An important research objective in plasmonics is reduction of insertion loss for plasmonic devices.  Plasmonic 
waveguide propagation loss necessitates the use of short devices, specifically, lengths, L, under 20 μm.  Two recent 
publications represent different approaches to minimizing insertion loss associated with utilization of plasmonic 
modulators.  In a recent Science article, propagation loss is minimized by directly integrating an all metal Mach Zehnder 
plasmonic modulator to a multi-core silica fiber using a vertical grating coupler and a polarization rotator (see Fig. 3),25 
thus eliminating loss associated with silicon photonic waveguides frequently used with plasmonic devices.6 Four-level 
pulse-amplitude modulation (PAM4) operation at 116 Gbit/s was demonstrated with a modulator with overall 
dimensions of 36 μm by 6 μm.  A bit error ratio (BER) of 1.7 x 10-3 was reported, which is below the hard-decision 
forward error correction (HD-FEC) limit.  The BER improved to 5.6 x 10-6 for 72 Gbit/s (PAM2) operation.  An energy 
efficiency of 30 fJ/bit was reported for 116 Gbit/s operation.  This approach minimized optical loss by eliminating the 
need for a silicon photonic waveguide to transition between silica fiber and the plasmonic modulator.  In a second 
approach, it has been demonstrated that insertion loss can be reduced below 3 dB without suffering an unacceptable 
reduction in bandwidth or thermal stability by resorting to resonant structures.4 
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Fig. 3.  A schematic illustration of an all-metal plasmonic Mach Zehnder modulator integrated with an organic electro-
optic material is shown.  Reproduced with permission from reference 25. 

 

2.  RESULTS AND DISCUSSION 
Electro-optic coefficients in the range 400-550 pm/V are observed for μm thick films of OEO materials such as shown in 
Fig. 1, while values in the range 90-390 pm/V are observed in ultra-thin films with thicknesses (electrode separations) of 
less than 150 nm. As noted in the previous section, JRD1 exhibits larger electro-optic activity than DLD164 in thicker 
films but the reverse is true for the narrowest waveguide widths (electrode separations).  These results are reasonably 
well understood and will not be discussed further here.  Rather, we now turn attention to the further improvement of 
OEO materials and the performance of devices incorporating new materials.  The objective of the following report and 
discussion is to illustrate lessons learned from past studies and to discuss the process being followed to produce next 
generation materials and devices.  In particular, a brief overview of promising work in progress is given.  

Multi-scale simulation starts with quantum mechanical calculations, most commonly involving hybrid density functional 
theory (DFT) methods.  These calculations are used to provide electronic structural information that is fed into coarse-
grained statistical mechanical methods such as Monte Carlo simulations.  Quantum calculations are also used to identify 
promising chromophore structures. Considerable effort has been expended comparing various computational alternatives 
and identifying the amount of exact Hartree-Fock exchange that leads to the best calculation of relative molecular first 
hyperpolarizability, β.1,29-34  It is relative, rather than absolute, β values that are particularly useful in down-selecting 
putative chromophores for synthesis and further investigation.1,29-34  Dielectric and frequency effects are now routinely 
simulated in the initial identification of relative β values of chromophores considered for synthesis and modification for 
integration into devices.34  Quantum mechanical considerations come full circle in the feedback loop involving quantum 
/statistical/quantum mechanics when chromophore distributions from coarse-grained statistical mechanical calculations 
are used to execute quantum mechanical calculations on strongly interacting chromophores in condensed phase organic 
electro-optic materials.31 

There exists a virtually endless array of potential chromophore structures to choose from as a starting point for the 
development of a new OEO material.  Prior theoretical and experimental work has identified chromophores based on a 
polyene bridge as commonly exhibiting the largest β values and thus representing the most promising class of 
chromophores for further and more detailed exploration.  Isophorone group protection of the polyene bridge has been 
shown to significantly enhance photochemical stability and provide a convenient site for chemical 
derivatization/functionalization.1,35-38 However, even restricting consideration to chromophores based on polyene bridges 
leaves an enormous number of candidates for consideration as illustrated in Fig. 4.  In this figure, basic chromophore 
structures CLD-1, GLD-1, and ZLD are shown to illustrate how electro-optic activity can increase as the length of the 
polyene bridge is extended.  Basic chemical reactions related to chromophore synthesis are also illustrated, as is the 
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This is an important observation because it not only permits improvement of β and n (and thus n3r33) but also permits 
reduction of device insertion loss because shorter device lengths, L, can be utilized if larger electro-optic activity or 
lower UπL are available.  Another important observation deriving from coarse-grained Monte Carlo calculations is that 
chromophores with dipole moments on the order of that of YLD-124 yield optimum r33 (more precisely optimum 
ρN<cos3θ>, where ρN is the chromophore number density in units of 1020 molecules/cm3 and <cos3θ> is the poling-
induced acentric order parameter, which varies between 0 and 1).  As can be seen from Fig. 7 (showing calculated 
relative β values for current and putative chromophores), chromophores with this range of dipole moment values are also 
predicted to exhibit optimum β values.  Fig. 7 illustrates that factors of 4-5 improvement in β may be expected with 
synthesis of new chromophores such as shown in Fig. 4 with dipole moments close to that of YLD-124.  Improvement is 
derivative partially from a longer π-electron conjugation length and partially due to more effective donor and acceptor 
moieties and better control of chromophore conformation through utilization of steric interactions. 

 
Fig.7.  Relative (vs. benchmark chromophore YLD-124) molecular first hyperpolarizability and dipole 
moments of existing chromophores (shown in red) and new designs (shown in blue and yellow) calculated at 
the M062X/6-31+G(d) level of theory in PCM chloroform are shown and plotted against each other.  Two 
maxima are observed, one at a similar dipole moment to YLD-124, and another for zwitterionic 
chromophores (negative hyperpolarizability, shown in yellow) with much large dipole moment.  Because of 
exceptionally strong centrosymmetric aggregation, it has proven extremely difficult to pole zwitterionic 
chromophores. Some new chromophores (shown in blue) are predicted to exhibit 4.5 times larger β values. 
The next stage of development of OEO materials is to modify the structure of promising chromophores to optimize 
poling efficiency, yield desired viscoelasticity, and facilitate lattice hardening.  The importance of structure has already 
been illustrated in our discussion of YLD-124, JRD1 and DLD164.  Other modifications have been discussed in the 
literature.33-38 Some lessons learned regarding modification have been that chromophore symmetry (linear vs. nonlinear), 
site isolation, control of added intermolecular dipolar and quadrupolar interactions, and utilization of binary 
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chromophore materials are important considerations.  As already noted, it is important to achieve multiple improvements 
with a single modification to avoid excessive reduction of chromophore number density (and corresponding impact on 
electro-optic coefficients and index of refraction values). 

For example, preliminary modifications to facilitate crosslinking (lattice hardening) based on Diels-Alder cycloaddition 
have been carried out for recently developed chromophores.  In most cases, this modification has been accomplished 
without attenuation of poling-induced electro-optic activity.  This is because such modification often yields improved 
site isolation that permits <cos3θ> to be increased sufficiently to offset the effect of reduction of chromophore number 
density on electro-optic activity and index of refraction.  Another route to keeping chromophore number densities high 
while exploiting an expanded range of intermolecular interactions and chromophore symmetries is to mix two 
chromophores to form binary chromophore organic glasses.1,38,40 Both enthalpic and entropy interactions can be 
exploited and some of the largest poling efficiencies are observed for binary chromophore organic glasses.  One of the 
binary chromophores can be used to influence matrix dimensionality and thus poling efficiency of both chromophores, 
permitting implementation of new processing techniques such as laser-assisted electric field poling.14   

It is important in discussing OEO materials to note that although theory-assisted design has resulted in the improvement 
of <cos3θ> and r33 by approximately an order of magnitude, <cos3θ> values are still only on the order of 0.2.  If 
improved β chromophores under development can be translated to even this level of poling-induced acentric order then 
electro-optic activity should increase by a factor of 2 to 4.  Statistical mechanical simulations suggest that with 
appropriate modification of the cores of new chromophores, acentric order should be capable of being improved by at 
least 50% while maintaining acceptably high chromophore number density.  Moreover, the longer lengths (and 
somewhat red shifted interband transitions) should yield somewhat increased index of refraction values, which should 
also help to somewhat reduce UπL values.  Variable angle spectroscopic ellipsometry (VASE) measurements, shown in 
Fig. 5 illustrate the change of index of refraction (n) with changing chromophore length.  Of course, longer chromophore 
lengths and greater poling efficiency can lead to greater poling induced index of refraction anisotropy that will need to 
be taken into account in the analysis of device performance, e.g., for estimation of in-device r33 values from measured 
UπL values.  Although measurement of both odd, <cos3θ>, and even, <cos2θ>, order parameters together with 
measurement of the anisotropy of k and n have been pursued for earlier chromophores, the low order parameters together 
with the offset of operational telecommunication wavelengths from material resonances resulted in such small 
anisotropies in the refractive index that they could be neglected in the analysis of in-device r33 and device performance.41 
However, it should be noted that VASE measurements have been very helpful in understanding subtle features of 
chromophore organization and matrix dimensionality when the linear dichroism of different components of the OEO 
material could be followed simultaneously by examining non-overlapping resonances (linear optical transitions).12,13,15,41  

Higher level of analysis and utilization of multiple characterization methodologies have been a hallmark of evolving 
OEO research, e.g., introduction of variable angle polarization referenced absorption spectroscopy (VAPRAS); 
measurement of both r33 and r13 using attenuated total reflection (ATR): measurement of <cos3θ> by vibrational sum 
frequency generation spectroscopy; etc.1 These have been particularly important because of the low poling-induced order 
associated with electric field poled OEO materials (as contrasted to highly ordered crystalline electro-optic materials).  
Such low order is obviously a challenge to characterize with high accuracy. Use of covalent bonds to define acentric 
order as pursued in the sequential synthesis/self assembly method1 may be a way to significantly increase order beyond 
values of 0.3, but this will require theoretical guidance as the same intermolecular interactions addressed in electric field 
poling still come into play. 

Minimization of the attenuation of electro-optic activity with decreasing waveguide width (electrode separation for 
plasmonic modulators) is a critical concern. Although this phenomenon has been observed for all OEO materials 
investigated to this point in time16, it is clear (as demonstrated by the comparison of the behaviors of JRD1 and 
DLD164) that chromophore structure (particularly with respect to steric or site isolation characteristics) impacts the 
observed behavior.  So for the narrowest waveguides, it may be appropriate to somewhat sacrifice chromophore number 
density to achieve improved acentric order (or more precisely, to recover some of the acentric order lost to interfacial 
interaction effects). Synthetic feasibility has been demonstrated on some of the most promising chromophores (see Figs. 
7 and 8) under consideration; it remains to appropriately modify these chromophores to address the issues discussed 
above.  Surface modification of electrodes is also being explored in an effort to reduce unwanted interfacial interactions 
that attenuate poling efficiency.  Finally, we note that theoretical calculations and experimental measurements are being 
extended to include a more first principles evaluation of index of refraction properties as well as electro-optic properties 
in order to refine the analysis of material and device performance.  Such analysis is appropriate and important if acentric 
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Quantum mechanical calculations (see Fig.8) have been used to investigate the potential impact of various 
chromophore core modifications (bridge extension, donor modification, acceptor modification) on molecular 
first hyperpolarizability, β.  The various modifications shown are not simply additive, but quantum 
calculations permit evaluation of the cumulative effects and illustrate the range of change that is possible with 
each type of modification.  Fig. 8 also illustrates that the strongest acceptors (and strongest donors—not 
shown) need to be avoided as they drive chromophores toward the zwitterionic limit leading both to 
attenuation of β and increase in μ.  The dipole moments, μ, of zwitterionic chromophores are so large as to 
make it difficult to achieve desired poling efficiency by chromophore core derivatization (e.g., addition of site 
isolation moieties).  Since the dipole moments of the new “neutral ground state” chromophores are very 
similar to previously studied chromophores such as YLD-124 and since the core structures are not radically 
different, it can be anticipated that the chromophore core derivatizations that have worked well in the past 
will work well for newly synthesized chromophores.  Coarse-grained statistical mechanical simulations are 
currently being run for putative modifications and are being used to guide derivatization of the most 
promising new chromophores (shown in blue in Fig. 7). 
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