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ABSTRACT  

Metal artifacts are one of the most common reasons for reduced image quality and usability in polychromatic cone-beam 

CT. In this work, we revisit empirical beam hardening correction algorithm and propose a few practical optimizations to 

simplify its application. First, fuzzy C-means segmentation method is used to perform an automatic segmentation of the 

metal component. Second, a minimum variance optimization technique provides a suitable combination of correction 

basis images. Finally, a sub-volume (spatially varying) optimization method is used to account for a varying contribution 

of metal artifacts through the image. We apply the modified algorithm to datasets from cone-beam CT and evaluate its 

performance. 
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1. INTRODUCTION  

Metal artifacts are one of the primary causes for image quality degradation in Computed Tomography. The streaks and 

shadows caused by the artifacts obscure the useful information content, prevent robust segmentation and feature 

detection in medical as well as industrial CT imaging. Numerous algorithmic methods have been proposed over the 

years to resolve the problem of metal artifact reduction (MAR). These include but not limited to segmentation-based [1, 

3, 5], inpainting or projection completion based [6], iterative model-based [3],[7], machine-learning based [8], and so on. 

More comprehensive overview of various metal artifact correction can be found in [9]. 

In this work we revisit an empirical beam hardening correction method (EBHC) [1] and propose a few practical 

modifications and enhancements, in order to reduce its reliance on manual user intervention. We apply the modified 

method to a number of cases from CBCT and discuss the results.  

2. METHODS 

The polychromatic nature of most X-ray sources used in CT leads to artifacts in the reconstructed images. These are 

most evident whenever studied objects and samples demonstrate high variability in atomic number (Z). The artifacts take 

the form of dark streaks and halos as shown in Figure 1. 

While it is possible to minimize the severity of metal artifacts by modifying the acquisition conditions, the most common 

artifact correction solutions are algorithmic. Here, we try to build upon and add a few modifications to an empirical 

beam hardening correction method which has proven its effectiveness despite its relative simplicity [1]. The primary 

goal of the proposed modifications is to make the EBHC application more autonomous, without requiring user 

intervention. 

 

(a)                                      (b) 

Figure 1. Examples of samples in CBCT that lead to creation of metal artifacts: a) cylindrical phantom with plastic filling 

and two 4mm diameter brass rod inserts. b) HDMI connector. 
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EBHC consists of the following steps: 

1. The acquired dataset  is being reconstructed to create 3D tomographic image as , where  is the 

tomographic reconstruction algorithm of choice; no metal artifact related correction is necessary at this stage, however, 

in many cases simple polynomial based beam hardening correction may reduce cupping artifacts and enhance the image 

structures which will help with the next step.  

2. The reconstructed CT image  is segmented to extract only the metal component .  

3. Results of the segmentation is then forward projected in the matching geometry to the original acquisition. Forward 

projection can be done in monochromatic fashion, however it is important that it follows the geometry as close as 

possible.  

 

4. The forward projected data  is then combined with the original data  to create a set of basis data : 

, 

where  and  can be lower integer values ranging from 0 to 5 as an example. Not all possible combinations of  and   

need to be considered due to increased computational burden and somewhat overlapping nature of these correction 

terms.  

5. Each data combination  is then reconstructed using reconstruction operation  to create corresponding set of 

images . We further denote uncorrected reconstructed image as . 

6. The higher order basis images that include forward projected metal component are effectively able to replicate the 

metal artifact streaks.  As such, the generated set of basis images can be combined using a certain optimal set of 

weighting coefficients to create a final corrected image that can effectively mitigate the effect of metal artifacts. In this 

work, original uncorrected image always uses the weight of 1.0, and the rest of the images can have variable weighting 

coefficients (negative values are also possible). This workflow is shown in figure 2. 

 

Figure 2. Diagram of the EBHC method, describing the first part of the method, leading to the forward projected data 

generation. 
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In original EBHC method soft thresholding was used to segment out the high-density components. In this work we found 

that fuzzy C-means segmentation can be very effective method as implemented in [10]. We used two material 

segmentation with starting values for the low-Z material segmentation set at zero, and high-Z material set at 80% of the 

maximum value of . To improve robustness of the segmentation it is also advisable to prefilter the image before the 

segmentation with edge preserving filter, such as median filter.  

The basis functions are combined according to the following equation: 

 

In this way no correction has been applied inside the metal parts, as we seek to mitigate the streak artifacts in between 

metal/higher-Z components. 

 

Figure 3. Second part of the EBHC method: optimal weighted sum of basis images leads to a reduction in metal artifact 

expression. 

Optimal weight determination is then the significant outstanding challenge. One obvious way is to do this manually, ad 

hoc going through all possible combinations of  that can provide artifact streak reduction while maintaining the image 

quality. The success of such method may vary and depends on the operator training. Additionally, any manual, operator-

controlled optimization method is tedious to perform with more than two or three basis images, and any optimization is 

global, with a single set of weights determined for the entire image (in contrast to an automated technique which may be 

allowed to vary spatially).  

In some cases, to simplify the optimization process, it may also be feasible to define the region in the reconstructed 

image that is known to be flat but has been imbued with spurious signal from the artifact streaks. Some examples of such 

flat region include uniform plastic enclosure surrounding the metal wires, or soft tissue surrounding metal implants or 

bone matter for biological samples. The assumption is that proper combination of basis images will minimize the streaks 

and will make such region more uniform. In this work, we propose to use minimum variance-based optimizer, estimated 

over the entire volume excluding metal/high-Z components. This also means that entire EBHC workflow can now be 

performed fully automatically (referred to in the text as automatic EBHC (AEBHC)). The further advantage of such 

automatic optimization method is that it can take arbitrary number of basis functions as an input without any 

complication for the user (other than prolonged reconstruction time). 
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As the objects can be highly non-uniform, with different amount of beamhardening, scatter, and metal artifact presence 

in each slice, a globally optimized single set of combination weights may result in under- or overcorrection of certain 

sub-volumes (slices). Likewise, it is not practically feasible to have those hand-tuned for each sub-volume, as it would 

be a very tedious task. We propose that optimization weights are recalculated for every sub-volume in AEBHC. Here we 

recalculate the weight every 64 slices, while averaging the individually optimized sub-volumes into the final volume 

using 50% overlap.   

Overall, all the discussed modifications allow for a high degree of EBHC autonomy, allowing single-click metal artifact 

reductions. 

3. RESULTS AND DISCUSSIONS 

To provide some examples of the reconstruction, use tomographic 3D X-ray microscopy data from Zeiss Xradia Versa 

(Carl Zeiss X-Ray Microscopy, Dublin, CA).  

The first example is the cylindrical phantom from Figure 1. Correction with AEBHC was able to drastically reduce the 

severity of the metal artifacts and the visual conspicuity of a small void indicated was much improved as shown in 

Figure 4. 

 

                                      (a)                                          (b)                                                         (c) 

Figure 4. Cylindrical phantom with plastic filling and two 4mm diameter brass rod inserts: a) uncorrected FDK 

reconstruction; b) corrected with AEBHC; c) reconstructed intensity profiles, drawn across the phantom from approximately 

10 to 4 o’clock. 

 

Three scans of a standard HDMI connector have been performed to test the performance of auto-EBHC method at 

different acquisition conditions. Acquisition conditions included 160 and 100 kVp, as well as stronger (equivalent to 

approximated 2 mm of Cu) and medium filter. In Figure 5, we show both uncorrected and AEBHC corrected images. 

From the images it is clear that higher kVp and stronger filtered X-ray spectrum (removing lower energy part of the 

spectrum) helps to reduce the severity of metal artifacts even in the uncorrected data. The artifacts are more severe at 

lower kVp, showing that acquisition parameters play a strong role in AEBHC effectiveness. AEBHC performs better at 

higher X-ray energy setting, and stronger filter (first column, Figure 5), however, corrected reconstructions outperform 

uncorrected reconstructions at all conditions. 

The advantage of sub-volume optimized AEBHC method is demonstrated in Figure 6. Here, we use simple phantom 

consisting of steel rods, plastic tubes inserted into the piece of plastic foam. In Figure 6 we show two reconstructed 

slices through the phantom, with both AEBHC and manually optimized EBHC method. Manual optimization of weights 

for EBHC was done over the slice shown in the top, and then applied globally to the entire volume. That leads to 

overcorrection for metal artifacts in the slice 200 shown in the bottom row. AEBHC was able to perform more 

consistently avoiding overcorrection across the entire volume.  
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Figure 5. Reconstructions of HDMI cable connector, performed at different 160 and 100 kVp, as well as with stronger 

(~2mm Cu thickness) and medium (1mm Cu thickness) filtering material. Uncorrected and corrected reconstructions are in 

top and bottom row respectively. 

 

 

Figure 6. Reconstructions of simple steel rods phantom. Manual optimization of global weighting correction parameters was 

performed for the slice 120. 

 

4. CONCLUSION 

We have demonstrated an improvement an empirical beam hardening correction method, combining three techniques to 

make the EBHC method fully automatic, with a good approximation for metal artifacts. First, fuzzy C-means was used 

to perform an automatic segmentation of the metal component. Second, a minimum variance optimization method was 

used to provide a suitable combination of correction basis functions. Finally, a sub-volume (spatially varying) 

optimization method was used to account for a varying contribution of metal artefacts through the image. The proposed 

method has been tested across the variety of samples and acquisition conditions and was able to noticeably diminish the 

severity of metal artifacts. It was also able to perform similarly to manually optimized method, as well as outperform 

manual method globally. We also foresee that some of the proposed modifications can be applied to other variations of 

beamhardening correction algorithms. 
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