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ABSTRACT 

In this article, a lightweight face recognition algorithm is constructed, which is based on the improved MobileFaceNet. 

To improve recognition accuracy and meet real-time requirements under the premise of ensuring a lightweight model, 

the inverse residual network of the ECA-Net network and H-swish activation function is designed. ECA-Net network 

enhances network cross-channel learning ability to improve algorithm accuracy and replaces ECA-Net network 

activation function with H-swish to enhance model device applicability. 
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1. INTRODUCTION

Face recognition, as an important biometric technology, finds extensive applications in the field of information security, 

particularly in the following areas: identification for documents and real-name magnetic card verification1; surveillance 

systems in customs, shopping malls, stations, airports, and banks2,3; public surveillance, enterprise, and residential 

security and management, such as facial access control attendance systems and facial recognition anti-theft doors; and 

matching of suspect photos4,5.With the booming of deep convolutional neural networks in recent years, the performance 

of face detectors has been greatly improved6. 

There are many algorithm models for face recognition7-10, including common networks such as DeepID and FaceNet. 

However, considering that facial recognition algorithms are limited by the deployment hardware resources and cannot 

meet the computational power requirements of these models11,12, we have chosen lightweight facial recognition models 

suitable for system deployment, such as the MobileNet series13,14, MobileFaceNet15,16, and other lightweight models. 

This article selects the MobileFaceNet model as the research object, and improves the model to address issues such as 

local occlusion and multi pose expressions in facial images, in order to improve the recognition performance of the 

model under unconstrained facial conditions. 

2. ALGORITHM DESIGN BASED ON IMPROVED MOBILEFACENET

The MobileFaceNet17 model is used for real-time facial recognition, based on the MobileNetV2 network framework. It 

uses globally separable convolution (GDConv) instead of average pooling layer operations and trains the network with 

arcface loss function to improve the facial recognition performance of the network model. The commonly used 

regression loss functions in object detectors are L1/L2 loss, smooth L1 loss, IoU loss and its variants18.  

During the experiment, it was found that MobileFaceNet had a decrease in facial recognition accuracy in unconstrained 

environments with side faces, local keypoint occlusion, and significant changes in facial expressions and postures. In 

order to improve the accuracy of the lightweight MobileFaceNet algorithm in this facial state, while considering the 

operational requirements of device performance and real-time performance during actual system operation, the 

MobileFaceNet network structure is improved by drawing on the advantages of lightweight MobileNetV3 network 

improvement. 

2.1 ECA-Net 

The ECA Net module appropriately increases cross-channel learning on the basis of SE Net learning channel weights. In 

order to improve performance without increasing network complexity, ECA Net adopts a local cross channel interaction 

method without dimensionality reduction. This method only designs a few parameters and can be effectively 
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implemented through one-dimensional convolution, avoiding the impact of SE Net dimensionality reduction on the 

learning channel, shown in Figure 1. 

 

Figure 1. Structure of and ECA-Net modules. 

The input features of the ECA Net network are pooled globally to obtain a 1×1×C dimensional feature vector, which is 

then weighted through a one-dimensional convolution operation of size K. K represents the number of cross channel 

interactions when the module calculates the weight of each channel, and the size of K is related to the number of input 

channels C, which is adaptively determined by the number of channels C. Through experiments, it was found that the 

optimal K value of the model is related to the depth of the network. The facial recognition model in this article is 

MobileFaceNet, which belongs to lightweight networks with shallow depth, so K is set to 3. 

2.2 H-swish activation function 

Convolutional neural networks commonly use the ReLU activation function to mitigate the vanishing gradient problem 

and expedite model convergence. ReLU sets all negative values to zero while leaving positive values unchanged. 

However, unbounded positive outputs in ReLU can be problematic. To address this, the ReLU6 activation function limits 

the maximum output value. 

An alternative to ReLU is the swish non-linear activation function, known to enhance network accuracy. Swish is 

defined as: 

 𝑠𝑤𝑖𝑠ℎ𝑥 = 𝑥.∂(𝑥) (1) 

In MobileNetV3, the authors adopt the H-swish activation function to balance accuracy and computational efficiency, 

specifically within inverted residual structures. H-swish is defined as: 

 ℎ − 𝑠𝑤𝑖𝑠ℎ[𝑥] = 𝑥
𝑅𝑒𝑙𝑢6(𝑥+3)

6
 (2) 

Here, the function caps the value at 6 when 𝑥 exceeds 6, optimizing accuracy and model suitability while preserving 

computational speed. Compared to ReLU6, H-swish incurs minimal additional computation, making it well-suited for 

mobile devices where efficiency is crucial. This strategic use of activation functions within MobileNetV3’s architecture 

enhances network accuracy without excessively burdening computational resources. 

2.3 Network structure design 

Integrating the above ECA Net structure and H-swish activation function into the bottleneck structure of the 

MobileFaceNet facial recognition algorithm to improve the model’s facial recognition performance in situations such as 

multi pose expression changes and local occlusion. Firstly, based on the reverse residual structure of the bottleneck 

network, an ECA Net module is added to improve the network channel feature extraction capability. At the same time, 

the H-swish activation function is introduced to replace the ReLU activation function in ECA Net to improve network 

accuracy and computational speed, while retaining the original network’s use of the linear activation function to alleviate 

the problem of feature information loss caused by dimensionality reduction operations. The integration of ECA Net, H-

swish activation function, and reverse residual structure is shown in Figure 2. 
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Figure 2. Schematic diagram of bottleneck module structure improvement. 

To manage model complexity and computational demands, the ECA-Net structure is selectively integrated into the 

bottleneck layer. Additionally, the activation function within the ECA-Net is replaced with H-swish to strike a balance 

between accuracy and computational efficiency. 

3. EXPERIMENTS AND ANALYSIS 

In this section, we enhance the MobileFaceNet face recognition algorithm by drawing inspiration from the enhancements 

introduced in the MobileNetV3 network model. We incorporate the ECA-Net module to improve network accuracy and 

replace the activation function with H-swish to boost computational speed. Experimental comparisons between the 

original MobileFaceNet algorithm and our improved version are conducted to analyze and validate the effectiveness of 

these enhancements using experimental data. 

3.1 Training dataset 

The CASIA-WebFace dataset, sourced from the internet, comprises 494,414 facial images belonging to 10,575 

individuals. This dataset is widely utilized in facial recognition algorithms due to its diverse range of conditions, 

including unconstrained settings, multiple poses, angles, and scenes for each individual’s facial photos. Therefore, this 

study utilized the CASIA-WebFace dataset for network training. 

However, since the dataset is collected through web scraping, it may contain low-quality images that do not meet face 

recognition standards, such as blurry images or those lacking visible faces. 

To address this issue, the study employed preprocessing and cleaning techniques using the RetinaFace face detection 

algorithm to filter out images where no face could be detected. Organizing the dataset involved careful attention to image 

locations and corresponding facial annotation files, ensuring that images of the same individual were grouped in the 

same folder.  

3.2 Model training 

The face recognition model training in this study took place in the same device environment as the face detection model. 

However, there was a switch in the deep learning framework to PyTorch version 1.10. 

The content of the training parameters for the facial recognition model is as follows: the training optimization method 

adopts Adam optimization method, the optimization method of random gradient descent uses momentum and adaptive 

learning rate to accelerate convergence speed, the momentum parameter used in the optimization method is set to 0.9, the 
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initial learning rate of the model is 0.001, the minimum learning rate is 0.0001, the learning rate attenuation method is 

cosine descent method, the weight attenuation is set to 0, the batch size is set to 16, the number of iterations is 100, and 

the training loss function is ArcFace. 

3.3 Testing and analysis 

To assess the improvement, experiments were conducted using MobileFaceNet as the backbone network, progressively 

integrating ECA-Net and transitioning the activation function to H-swish during model training. The weight file 

corresponding to the model with the lowest loss was retained for evaluation. Evaluations were performed on the LFW 

test dataset using these different model configurations. 

The evaluation process began by loading the trained model and employing the RetinaFace face detection algorithm to 

determine face bounding box positions and 5 facial landmarks for face cropping. Utilizing annotation information from 

the LFW training dataset, the face recognition model extracted features for each pair of test images, resulting in face 

feature vectors. The Euclidean distance between the feature vectors of each test pair was calculated. A Euclidean 

distance threshold was set, and distances were iterated through. If the distance was below the threshold, the pair was 

classified as the same person; otherwise, they were classified as different. By comparing these classifications with 

ground truth labels, accuracy was computed for each threshold. The threshold yielding the highest accuracy was deemed 

optimal for the model. 

The evaluation results, depicted in Figure 3, show that the original model achieved a test accuracy of 97.72% with an 

Euclidean distance threshold of 1.10. Models are mostly fast, but not accurate enough19. In contrast, the improved model 

achieved a test accuracy of 99.02% with a slightly lower Euclidean distance threshold of 1.08. These findings highlight 

the efficacy of the enhancements introduced to the MobileFaceNet model. 

 

Figure 3. Test results of MobileFaceNet model and improved model. 

Table 1 presents detailed test results for each experimental model, including detection accuracy (AP), model size, and 

inference speed (FPS). FPS values were determined by evaluating input images using a face detection and recognition 

model featuring ResNet50 as the backbone network. The test images used were identical to those employed for training 

the face detection model. 

Table 1. Performance data comparison for models on the LFW dataset. 

ECA-Net H-swish Average precision AP (%) 

- - 97.72 

√ - 98.95 

√ √ 99.02 

The comparative analysis of experimental data demonstrates that within the same experimental environment and 

parameter settings, introducing ECA-Net improves the accuracy of the original MobileFaceNet model on the LFW test 

set. Additionally, the H-swish activation function enhances the model’s computational speed to a certain extent. 

Regarding detection accuracy (AP), the original MobileFaceNet achieves 97.72% accuracy on the LFW test set. 

Introducing ECA-Net results in a 1.23% accuracy improvement, but it increases the model size from 4.7 MB to 4.85 MB. 

This expansion in network structure leads to larger model size, more parameters, and increased computational load, 

resulting in a slight decrease of 0.159 in inference speed (FPS). However, the use of the H-swish activation function 

improves model accuracy while ensuring that computational speed remains within an acceptable range. 
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4. CONCLUSIONS 

This article mainly focuses on the research and experimental analysis of facial recognition algorithms. Taking the 

lightweight model MobileNet series as the research object, this paper analyzes the characteristics of separable 

convolution and reverse residual structures in network models, and combines the improvement characteristics of 

MobileNet series models to improve accuracy while ensuring network operation speed. In response to the multi pose and 

multi expression characteristics of faces in unconstrained scenes, the ECA Net structure is introduced in the reverse 

residual block to increase cross channel weight learning and improve network feature extraction ability. At the same time, 

the H-swish activation function is used to ensure model operation speed and improve accuracy. The CASIA WebFace 

dataset and LFW test dataset were used for data evaluation, and experimental data showed the effectiveness of the 

improved method. 
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