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ABSTRACT

This talk will first give a general discussion on the ultrasound media characteristics of blood and spectral densities of tissues.
The first-order scattering theory, multiple scattering theory, Doppler spectrum, cw and pulse scattering, focused beam, beam
spot-size, speckle, texture, and rough interface effects will be presented. Imaging through tissues will then be discussed in
terms of temporal and spatial resolutions, contrast, MTF (modulation transfer function), SAR and confocal imaging
techniques, tomographic and holographic imaging, and inverse scattering. Next, we discuss optical diffusion in blood and
tissues, radiative transfer theory, photon density waves, and polarization effects.

Keywords: Ultrasonic scattering and imaging in tissues and blood.

1. INTRODUCTION

For the past several decades, ultrasonic imaging has been studied extensively and a detailed historical account has been given
in the excellent monograph by Shung and Thieme in 1993 [, We have also conducted research on several aspects of wave
propagation and scattering in random media, and therefore, this paper presents an overview of some of the physical principles
related to applications in ultrasound imaging of tissues and blood.

We start with ultrasound scattering in tissues, clarifying coherent and incoherent fields, multiple scattering effects, beam
scattering, and pulse and interface effects. Next, we discuss ultrasound scattering by blood including Doppler, pulse
scattering and beam scattering. We then focus on spatial and temporal resolutions including MTF, SAR, and confocal
imaging. We will also add some discussions on optical diffusion in tissues and blood, and Wigner distributions.

2. ULTRASONIC SCATTERING IN TISSUES "M

For ultrasound, tissues can be considered “random continuum”, which means that the density p and the compressibility x are
continuous random functions of position. Under this assumption, we first obtain the scattering cross-section per unit volume
of the tissue.

2.1 Ultrasonic tissue characteristics

Consider a volume 6v of the tissues with the density p, and the compressibility x, which are different from the surrounding
average density p and compressibility x. Under the assumption that the medium p, and x; are only slightly different from p
and x, we can use the Born approximation to obtain the following well-known formula for the scattering amplitude:

P k2 ikg-F g0
f(o,i) = = Lv( Vet V,c080)e™" dv 1
where
Ve = Ke K _ compressibility fluctuation
K
Y, = Pe” P _ density fluctuation.
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We then obtain the differential scattering coefficient o, or the differential cross-section per unit volume of the tissue
(Figure 1).

2 =~
o) = L2 -y L ([ r@mpE) > ® O Py, @
where
¥(7) = 7(F) + 7 ,(F)cosd
and
k, =k(i-6).
We can express (2) using the spectral densities
S, (k) = (2—;? [B,@)e* Hay, 3)

and B, (#;) is the correlation function given by
B, (7)) = <y(®)y(#)> = Be(y) + Bo(7)c0s’0 + 2 By (7)) cost )
We therefore have the expression for o,

0,(6,7) = (%) K [Se (k) + S, (k) c0s? 6 + 28, (k,) cosB]. )

The unit commonly used for o, (differential cross-section per unit volume) of the tissue is cm*/cm’ sr = cm™ sr™' where sr
= steradian (unit solid angle).

i \
i, é)
‘ /'6(00’ ¢0)
\
Sv 4 y
A e3
0 v

. . . L. L X Tissues
Figure 1: Incident wave is propagating in the direction

i (unit vector) and the sczittered wave is observed Figure 2: Anisotropic tissues.
in the direction o (unit vector).

2.1.1 Anisotropic tissue

Tissues such as myocardium are often anisotropic. For example, they may be elongated in one direction. This can be
expressed using Gaussian correlation function as:

2 2 2
_ X z
B.(7) = olexp(- 24 - Yd _ Zdy 6)
0 0 03
We can also assume that
_ 1 _
B,(ry) = —Z_Bx(rd)' 1%

B, (74) = 0.

And typically, 62 ~10™, ¢, ~ £, ~30um and ¢, ~ 200um.
We then get (Figure 2)
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— 20,00,
S, (k) = igm [——(kz 2+ k54 + k50))] (3)

where
ks = k(sing;cosg; —sing,cosd,)
ks, = k(sing;sing; — sing,sing,)
s3 = k(cosg; —cos@,).

It is known that anisotropic tissues such as shown above exhibit the double peaks in the scattering pattern as shown in Figure 3.

Figure 3: Differential Scattering Coefficient o for anisotropic tissues.

2.1.2 Spectral density S, (k,)

The Gaussian spectrum (8) is often used since it is mathematically simple and includes the essential parameters o, ¢,, ¢,,
and ¢,. However, other spectra which may be more representative of the actual tissues have been proposed including fluid
spheres, exponentials and modified exponentials. Here, we add the following power-law spectrum.

S (k) = S (0)[1 + (k) + (kyt))? + (kyyt,)? 172 ©

where k,, kg, and kg, are given in (8), and # is called “spectral index”.

s1°
If the spectral index #» is 3, (9) reduces to the “Henyey-Greenstein” formula and if n = 4, it reduces to the spectrum for the
exponential correlation function. In general, for the isotropic case, we write

B(y) = B(O) ——— (‘& 4 v(§> (10)

v—ll-*( )
L(v+3) ¢
w7 TO) @+ kfez)”%

and S(ky) = B(0)

valid when v > — 3/2.

2.2 Coherent and incoherent waves [

As the pressure wave p(7) propagates through a random medium such as tissue, the wave experiences random fluctuation in
space and time, and becomes a random function. We can therefore express the wave as a sum of the coherent (average)
< p > and incoherent (diffuse) p, components

pP=<p>+p,. (11)

For a time harmonic wave with exp(-i®f) time dependence, we can express p in (11) in the complex plane (Figure 4).
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random medium
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(a) without random medium (b) weak fluctuation
(c) strong fluctuation (d) Rayleigh distribution
Figure 4: Coherent and Incoherent waves.
p = Ae' ‘. 12)

As shown in Figure 4, if the randomness of the medium is small or the propagation distance is short, the wave first
experiences phase fluctuations with small amplitude fluctuation (b). As the fluctuation increases, the phase fluctuation
becomes significant (c). Eventually, however, both in-phase and quadrature components become Gaussian distributed, and
this is called the “Rayleigh distribution”.

Let us first consider the coherent field < p >. The total field p satisfies the wave equation.

(V24 &D)p = 0. =
The wave number £ is a random function and can be written as
K= <k*>(1+ ¢) 14)

where ¢ is the fluctuation.
The propagation characteristics of < p > have been studied extensively and given by the equivalent propagation constant K.

(V2+KH)<p>=0 (15)
where
. 2232 = _
K = <> - I Idr <gg, > (7T — 1)
0
where <g &> =<&n) e(n)>
ro=|n-rl, and <k> = <k?>V%.

Note that in general & is complex showing that the coherent field < p > attenuates due to the scattering.
If < &&> is exponential, then we have

<k*> 0*c?

K? = <k*>[1+
1-i2<k>¢

] (16)
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showing attenuation (positive imaginary part).

The incoherent field p, can be obtained by several formulations depending on the amount of fluctuations. For very weak
fluctuations, we use the first-order scattering theory. As the fluctuations increase, the second-order and multiple scattering
need to be considered. In the limit of many scattering, we have diffusion approximations (Figure 5).
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Figure 5: First order, multiple scattering, and diffusion.

2.3 Beam propagation and scattering

Let us consider a collimated Gaussian beam propagating in a random medium which is given by the Gaussian correlation

function.
2
<IR7E)> = of exn(~14).
The beam at z = 0 is given by
2
p(z=0) = Aoexp[—(wﬁo) ]

where p* = x> +y* and wy is the beam size (Figure 6).
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Figure 6: Collimated beam in random medium
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Figure 7: Spot size of focused beam
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Due to the random medium, the total beam size is expanded, and the intensity at z is given by

2
I = g2 Mo 2'0 19
(2) = 4 ) exp[- ) —=1 (19)
The beam size w(z) is given by
W) = wl1+ (14 o 0y 20)
ZO

2
where z, = kw_20 , ¢ = correlation distance, 7, = optical depth = Jr (kzayzf)z.

This is pictured in Figure 6.
If the beam is focused at the focal distance f, then the beam spot size at z = f'is given by
S

w(z= 1) = w1+ 2o, (21", @1)

2.4 Pulse propagation

Next we consider the propagation of a short pulse in a random medium. As the wave undergoes multiple scattering, the wave

experiences time delay, and its cumulative effect is expressed by the pulse broadening (Figure 8). The broadening depends

on the medium and the optical scattering depth and is approximately given by
L. ¢

T = (=
c (c) 2k202

(22)

where 1, is the optical scattering depth and ¢ is the correlation distance, p is a constant (1 to 2) depending on the medium
correlation function, and p = 1 for Gaussian correlation function.
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Figure 8: Pulse propagation for (a) weak fluctuation and (b) strong fluctuation.

2.5 Interface effects !l

When a wave, which has propagated through a random medium, is incident on a rough interface, the scattered wave is
modified by the roughness (Figure 9). If the surface is smooth, the reflected wave behaves in a manner similar to the incident
wave. As the roughness increases, the diffuse components increase and the coherent component diminishes. The incident
wave has already propagated through the random medium, and therefore it consists of the coherent and the incoherent waves.

We express this by the incident specific intensity I; (z) which is a function of the direction i. The scattered specific
intensity 7, (0) is then given by

L,(6) = ——— [0°(3.0) ,() do, (23)

050
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where o° is the scattering cross-section per unit area of the rough surface and dw, is the elementary solid angle for i.
If the surface is Lambertian, then, the cross-section is given by

c°(6,i) = o, cosg; cosf, . (24)
And therefore,
n o
Ig(0) = % Ilicosﬁidwi. (25)
4

-
- — f
S \ ~ — / — 1
~ -~
—
—

>~ ~ 1,-(1’:) 0
AN AN flat surface 1,(0)
\\ \ AN
AN \\
N S /
N N

SR
BV AN e v j \';\

/ J l \ rough interface I, Q)

Figure 9: Reflection by flat and rough interfaces. Figure 10: Specific intensities at the interface.

3. SCATTERING IN BLOOD, SCATTERING COEFFICIENTS, AND DOPPLER SHIFT

The ultrasonic scattering amplitude of a single red blood cell is well known ).

2.3 _ _
F@,0) = A (Kemx L 3p730 00 (26)
3 K 2 p,+3p

where a is the radius of the equivalent spherical cell. The differential scattering cross-section per unit volume of the blood is
therefore

_Hf,H)
Ve
where H is the hematocrit (0.4 for human), ¥, is the volume of the single cell (4na’/3), and J»(H) is the packing factor t

The Percus-Yevick packing factor for hard spheres is often used as an approximation

_q-8
S ) = (1 +2H)

2

o (6,) | 76D

27)

(28)

If the blood is moving with velocity V which consists of the average < V> = U andthe fluctuating velocity T7f , then we

have the cross-section with Doppler shift.

12 _ o,
c(6,i,0) = a(é,f)[kfﬁ } exp{—w} (29)

2 2 2
oy 2k o

S
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where we assumed the fluctuating velocity I7f is Gaussian distributed, and &, = k(i -06).

4. IMAGING AND RESOLUTION

4.1 Modulation Transfer Function (MTF) 7!

As a wave propagates through a random medium, the wave at any point is a mixture of coherent and incoherent waves. If we
observe this wave with a lens or an array of detectors, we no longer obtain the Airy disk (Figure 11). The coherent intensity
P. is the Airy disk with its magnitude diminished by the optical depth exp (-,). The incoherent intensity P; is spread out due
to the angular spread A6, which is related to the correlation distance (coherence length) p, of the wave (Figure 12).

AG ~ AL . (30)
p o k p o
The coherence length p, is an important quantity not only giving the angular spread, but it also gives the pulse spreads At
L. A§? 1
At ~ (=) —~ (— 31
(5~ C) T @31)
where L is the propagation distance.
Note that the coherence length p, is approximately given by
¢ drz,~ «/-7;k20'72€ (tissues). (32)
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Figure 11: Image of a point source through random medium.
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Figure 12: Airy disk P, and incoherent intensity P; Figurel3: Wigner distribution
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4.2 SAR and Confocal imaging

Synthetic aperture radar and confocal imaging techniques have been used extensively to obtain high resolution images.
Conventional linear SAR can be generalized to circular or other SAR geometries ', Confocal imaging is similar to SAR
and has been used extensively in optical applications. It is also possible to make use of the signal processing techniques such
as Capon’s method. It has been shown that Capon’s method combined with chirp pulse SAR can give an improved image,
even under some multiple scattering environments.

5. OTHER IMAGING TECHNIQUES

Several other imaging techniques have been proposed, including the use of coherent backscattering (BI12] tomographic and
holographic imaging, and speckle interferometry. In optical imaging for tissues, diffusion approximations are extensively
used including photon density waves '), polarization, and pulse scattering.

6. WIGNER DISTRIBUTION

Let us formulate the problem of transmitting aperture, scattering medium, and receiving aperture (Figure 13). The
formulation is similar to those given by Waag ™), but makes use of the Wigner distribution. At the emitter E, the aperture
distribution is given by p,(jp,). The mutual coherence function at E is given by

L(p, 7)) = <p(@) p,(P)> (33)
Wigner distribution 7 (p,,k) is then obtained by
W(p.k) = [T(5,7)e*™ dp, (34)

where p, = p,—p, and p, = (p,+ p;)/2.
Note that W is similar to the specific intensity. The difference is that the specific intensity is real and positive, while the
Wigner distribution can be negative.

Now, the Wigner distribution propagates through the random medium and at 7, we have W, (7 ,l;i) incident upon V. The
scattered Wigner distribution W, (7, I;S) is then given by
W7 k) = [S.6.T) W7 k) dk; (35)

where S| is the phase function.

The scattered Wigner distribution #; then propagates through the random medium and reaches the detector D. The received
power is then given by

B = [4,(.k) W,(,k,) dk, dr, (36)

where 4, is the Wigner distribution of the aperture distribution.
This formulation requires a detailed study of the propagation characteristics through the random medium such as those
obtained by radiative transfer theory *..

7. CONCLUSION

In this paper, we presented an overview of the ultrasound imaging of tissues and blood. Included are general discussions on
coherent and incoherent waves, beam, rough interface, speckle, MTF, SAR, optical diffusion, and Wigner distributions.
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