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ABSTRACT

A lower bound on the amount of energy needed to carry out an elementary logical operation on a qubit system,
with a given accuracy and in a given time, has been recently postulated. This paper is an attempt to formalize
this bound and explore the conditions under which it may be expected to hold. For a specific, important case
(namely, when the control system is a quantized electromagnetic field) it is shown how one can extend this result
to a generally stronger constraint on the minimum energy density required, per pulse.
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1. INTRODUCTION

It has become of interest lately to explore the constraints that the quantum nature of the control degrees of
freedom might impose on the practical operation of quantum logical gates.1–4 A very general result derived
recently by Ozawa4 is that any quantum gate that changes the energy or angular momentum state of a qubit will
require a minumum number of ancillary bosons of the order of 1/ε, if it is to have a failure probability smaller
than ε. If the bosons are excitations of a quantum harmonic oscillator (such as, e.g., photons) of frequency ω,
this becomes a minimum energy requirement

Emin ∼ h̄ω

ε
(1)

in agreement with previous studies1, 3 which focused on the effect of the quantum nature of the electromagnetic
field on the performance of logical gates.

Ozawa’s result has very wide applicability, but it must be kept in mind that it is relatively straightforward
(and it may be, in fact, advantageous for other practical reasons) to encode a logical qubit in degenerate states
of systems of a few qubits, which are mutually interconvertible without any energy or angular momentum cost:
for instance, the encoding in a 3-qubit decoherence-free subsystem5, 6 uses as the logical zero the state |0〉L =
2−1/2(|01〉−|10〉)|0〉 of three physical qubits, and as the logical one the state |1〉L = 6−1/2(|100〉+ |010〉−2|001〉).
These two states have the same quantum numbers for total angular momentum and energy; in fact, they simply
represent the two different ways to get a state with l = 1/2 and m = −1/2 in a system of three spin-1/2 particles.
For such an encoding, conservation of total energy or angular momentum alone does not appear to restrict the
possible logical operations.

I have recently shown7 that in many cases, regardless of whether a conservation law is broken or not by the
action of the logical gate, there is a minimum requirement on the energy of the “control” system, or degree of
freedom, of the form (1) if the system is an oscillator, or more generally of the form

Emin ∼ h̄

εT
(2)

if the gate is to be carried out in a time T with failure probability less than ε. My analysis covers gates
mediated by external electromagnetic fields, or by controlled collisions between particles, assuming that the
fields or particles are in minimum uncertainty “coherent states.” There are, nonetheless, some questions still
open, regarding the full generality of the result, and, for instance, whether placing the control degree of freedom
in a nonclassical state (such as a squeezed state) might lower the bounds or not. In this paper I shall attempt
to express the constraint (2) as a formal postulate, and exhibit a number of worked out examples and ideas for
how a general proof might proceed. I will also show how for a large class of systems (atom-like qubits interacting
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with a quantized electromagnetic field) the constraint (2) can, in general, be strengthened, resulting in a more
precise specification of the volume of space where the minimum energy (2) should be located, or equivalently, in
a minimum energy density requirement. Interestingly, this result turns out to be equivalent, for these systems, to
the familiar requirement8 that the probability of spontaneous emission should be negligible during the operation
of the gate.

This paper is organized as follows. In the next section, the formal postulate is presented, along with some
heuristic arguments for its validity. Section 3 deals with several worked-out examples. Section 4 presents the
new results for atom-like qubits. Finally, Section 5 has some discussion and conclusions.

2. A FORMAL POSTULATE

2.1. Using a quantum control to achieve a conditional sign flip

In order to focus only on the constraints arising from the quantum nature of the control, and not on those imposed
by conservation laws, I consider here only a particular kind of two-qubit gate which preserves the qubits’ energy
and angular momentum (assuming the |0〉 and |1〉 states are eigenstates of these variables), namely, the controlled
sign-flip gate, which leaves the states |00〉, |01〉 and |10〉 unchanged but turns |11〉 into −|11〉. The role of the
control system is, essentially, to switch “on” and “off” a Hamiltonian which accomplishes this in a time T , to an
accuracy given by ε.

To that end, let the control degree of freedom be initially in the state |ψ0〉, and let its self-Hamiltonian be H0.
Let the interaction Hamiltonian have the simple form HI = V |11〉〈11|. This is the minimal form needed for the
purpose at hand, and V need depend only on “control” operators. Further, suppose that V is time-independent
in the Schrödinger picture, although this may not be necessary. What is necessary is that the interaction be
turned on and off only by the control system, acting under the influence of its own self-Hamiltonian (it follows
that |ψ0〉 cannot be a stationary state). Formally, we require

〈ψ0|V 2|ψ0〉 � 〈ψ0|e
i
h̄

∫ T

0
H0 dt′ |V 2|e−

i
h̄

∫ T

0
H0 dt′ |ψ0〉 � 0 (3)

at the initial and final times, t = 0, T . The reason to use V 2, and not just V , in (3) is that one could have
situations where 〈ψ0|V |ψ0〉 = 0 due to some symmetry, without necessarily implying that the interaction is “off”
at that time. For instance, if the system is a harmonic oscillator, with V ∼ a (the annihilation operator) and
|ψ0〉 = |n〉, one has 〈ψ0|V |ψ0〉 = 0, yet such a V would have a large effect on the state |ψ0〉.

To capture the desired change in sign at the end of the time T , we define the “failure probability” of the gate
by considering what it does to a state such as |00〉 + |11〉. What we want is something like

1√
2
(|00〉 + |11〉)|ψ0〉 →

1√
2
(|00〉 − |11〉)e−

i
h̄

∫ T

0
H0 dt′ |ψ0〉 (4)

with the control system completely factorizing out of the part of the state that represents the two qubits. In
other words, we want, among other things, that, by the end of the operation, the qubits leave no trace on the
control system of what state they were in originally. What we will really get, however, is instead,

1√
2
(|00〉 + |11〉)|ψ0〉 →

1√
2
|00〉e−

i
h̄

∫ T

0
H0 dt′ |ψ0〉+

1√
2
|11〉e−

i
h̄

∫ T

0
(H0+V ) dt′ |ψ0〉 (5)

which shows that the qubits and the control system are generally left in an entangled state. The “failure
probability” can now be defined as 1 minus the square of the overlap between (4) and (5), i.e.,

p = 1− 1
4

∣∣∣∣1− 〈ψ0|e
i
h̄

∫ T

0
H0 dt′

e
− i

h̄

∫ T

0
(H0+V ) dt′ |ψ0〉

∣∣∣∣
2

= 1− 1
4

∣∣∣∣1− 〈ψ0|T e
− i

h̄

∫ T

0
VI(t′) dt′ |ψ0〉

∣∣∣∣
2

(6)

Proc. of SPIE Vol. 5115     155



where the last equation is written in the interaction picture, and time-ordering is denoted by T . Now we have
all the ingredients needed to make the following general, formal claim: in order to be able to turn on and off an
interaction strong enough to flip the sign of the wavefunction in (6) over the time T , and to do this accurately
enough, so that p < ε (where ε is some acceptable error) the state |ψ0〉 must have a minimum energy of the order
of

〈ψ0|H0|ψ0〉min ∼ h̄

εT
(7)

This claim involves only the (arbitrary) control system, its self-Hamiltonian, and the interaction V . Note that
Eq. (7) is just the same as Eq. (2). The alternate result, Eq. (1), for an oscillator follows from (7) on the
assumption that, essentially, the basic “signal to noise” ratio is achieved in one period of oscillation, after which
both the “signal” and the “noise” increase together at the same rate (see later examples in this paper, especially
Section 3.2.2).

2.2. A counterexample to show that the condition (3) is necessary

It may be useful to show explicitly that the alleged constraint disappears if one allows the interaction to be always
“on,” that is, if (3) does not hold. Let the control degree of freedom be a harmonic oscillator, let |ψ0〉 = |n〉, an
energy eigenstate, and let V = h̄ga†a. Then one only has to choose T = π/gn and equation (6) will be satisfied
exactly, with p = 0, which means one could make ε arbitrarily small, and (7) would be violated.

“Turning the interaction on and off,” then, is an essential role played by what we are calling the “control”
system here; in fact, it may be used as the distinctive property to identify such a system in any proposed quantum
logic scheme. Once identified, the control system must be quantized. A constraint like (1) or (2) will typically
not be found to hold if the switching field is treated classically, since such classical fields are normally treated as
external parameters, not dynamical variables, and hence are not subject to any back reaction, entanglement, or
conservation laws.

Speaking figuratively, the “trick” that the control system (or degree of freedom) has to pull off is to avoid
getting entangled with the qubits while turning on and off an interaction that affects different qubit states in
different ways. The reason we may expect that this cannot be done with complete success, in general, is that it
requires the control system to exert a sort of state-dependent “force” on the qubits, which then react back on
it in a way that must also be state dependent. As a result, the two alternative paths in (5) become somewhat
distinguishable (by looking at the state of the control) and the coherence of the state of the qubits alone is partly
lost.

There is a whole theory (see Ref. 9, Ch. 19, and references therein) of “quantum nondemolition” measurements
which are based on “back-reaction avoiding” interactions (although in this case the term “back reaction” is used
in the opposite way, to denote the reaction of the meter on the system being measured). The example above,
in which the initial state of the “meter” (the “control,” in our terminology) is an eigenstate of the interaction
Hamiltonian, is actually of this form, and shows why, in general, such schemes will not be applicable here:
namely, in order to be able to turn the interaction on and off, the state of the control system cannot be an
eigenstate of the interaction Hamiltonian. This point will be further elaborated in Section 2.4 below.

2.3. A heuristic proof of (7) when the control is a material particle

Suppose that the “control” system is actually the center of mass coordinate of a material particle (which could
itself be one of the physical qubits; the “quantum bits” would then be stored in other degrees of freedom, and
the gate could be the result of a collision, which is arranged in such a way that if the two qubits are in the state
|00〉, there is no phase change to the total wavefunction, whereas there is a phase change of π if they are in the
state |11〉; schemes of this type have been proposed, for instance, in Ref. 10). For such systems, an easy way to
“derive,” heuristically, the constraint (7), along the lines just discussed, is as follows.

If the initial state of the qubits is |11〉, the potential V produces a force dV/dx on the particle, which, acting
over a time T , results in a position change (relative to the unperturbed wavepacket) of

δx ∼ 1
2m

dV

dx
T 2 (8)
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and a momentum change

δp ∼ dV

dx
T (9)

From the condition ∫ T

0

〈VI(t′)〉dt′ = πh̄ (10)

which would have to hold, at least approximately, in order for the desired phase change to take place in (6) (the
expectation value is taken in the state |ψ0〉; recall we are working in the interaction picture), one can estimate V
as ∼ πh̄/T and dV/dx as ∼ πh̄/LT , where L is a characteristic length, that the particle traverses in the time T
(so the velocity v ∼ L/T ). Note that dV/dx ∼ πh̄/LT directly follows from the requirement that the interaction
must be “turned on and off” over the distance L. The center of mass motion of the otherwise freely moving
particle acts as the “control handle” that turns the interaction on and off simply by crossing that region of space
where V is nonzero.

This position and momentum change of the wavepacket associated with the state |11〉 will lead to a “mis-
overlap” with the wavepacket associated with the state |00〉, of the order of (δx/∆x)2 and (δp/∆p)2, where
∆x and ∆p are the original, intrinsic position and momentum uncertainty. Then, the requirement that this
mis-overlap be negligible (or equivalently “undetectable” to the accuracy specified by ε) leads to the constraint

(
δx

∆x

)2

+
(

δp

∆p

)2

< ε (11)

which then becomes (
πh̄

L

)2 (
T 2

4m2

1
∆2x

+
1

∆2p

)
< ε (12)

Using the fact that ∆x∆p ≥ h̄/2 to optimize (minimize) the left-hand side of (12), we find that it reduces to

2π2h̄T

mL2
< ε (13)

which is to say
1
2
mv2 >

π2h̄

εT
(14)

if v ∼ L/T .

This is clearly consistent with (7), if the Hamiltonian H0 is simply that of a free particle (in one dimension).
More sophisticated examples will be presented, in greater detail, in the following Section, but hopefully this
should be enough to provide a plausibility argument for why one might expect (7) to hold in general.

2.4. Some further insights on the reason for the constraint (7)

The previous subsections attribute the constraint (7) to the state-dependent back-reaction of the qubits onto the
control degree of freedom. In a way, this is a very old idea, as old as quantum mechanics: in order to be able
to observe interference (i.e., to preserve coherence) in a quantum mechanical system that is interacting with a
classical “apparatus,” the apparatus (in this case, the “control” system described by |ψ0〉) must be large enough
for the “back reaction” of the quantum system on it to be negligible.

A somewhat more formal way to argue along these lines might be as follows. Putting together (3) and (6),
one can say that the action of the self-Hamiltonian H0 on |ψ0〉 must change it, in a time of the order of T , from
a state for which V |ψ0〉 � 0 to a state for which V |ψ0〉 is of the order of (πh̄/T )|ψ0〉 (this is a measure of the
degree of noncommutativity between H0 and V ). One may, then, expect the V in the exponent of (6) to have
a similar effect, and hence to “displace” the energies of the states making up |ψ0〉 by an approximate amount
∆E ∼ πh̄/T . The condition (7), then, would express the minimum energy that |ψ0〉 must have in order to still
overlap with itself to the degree given by ε, after its component energies have been “messed up” by an amount
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of the order of ∆E; in this language, it simply reads ∆E/E ≤ ε. A simple example of how this may work in
practice was given in the previous subsection.

On the other hand, an attempt to evaluate (6) perturbatively might suggest a somewhat different interpreta-
tion. To begin with Eq. (3), clearly, if VI(t)|ψ0〉 was nearly equal to zero at all times the interaction would have
essentially no effect; so then |ψ0〉 cannot, in general, be an eigenstate of VI(t), which means that VI(t) will not
be sharply defined at all times in the state |ψ0〉. There will be fluctuations, which one could formally separate
out as

VI(t) = 〈VI(t)〉 + ∆VI(t) (15)

with 〈VI(t)〉 ≡ 〈ψ0|VI(t)|ψ0〉, and |ψ0〉 not an eigenstate of ∆V . In that case, if one chooses V , |ψ0〉, and T so
that ∫ T

0

〈VI(t′)〉dt′ = πh̄ (16)

one may estimate the failure probability p given by (6), by expanding the exponential, as

p � 1
2h̄2

∫ T

0

dt

∫ t

0

dt′〈ψ0|∆VI(t)∆VI(t′)|ψ0〉 + c.c. (17)

This is the approach to (approximately) evaluating (6) that was adopted in Ref. 7, and it will also be used in
most of the examples to follow.

Equation (17) might be interpreted as suggesting that the reason the gate does not completely work is (at
least to this order in perturbation theory) entirely due to the quantum fluctuations in the control system, which
cause VI(t) to be not completely defined as a c-number (i.e., it is an operator, with nonvanishing variance in
the state |ψ0〉). There is no question, I think, that these intrinsic fluctuations are a significant part of the story,
but one should note that the operators ∆VI(t) appear in (17) evaluated at different times, so there is more to
it than just the variance of VI(t) at any given time. In fact, if the expression (15) is substituted in (5) (or its
interaction-picture equivalent), one can clearly see that both the entanglement and the back reaction discussed
earlier are present there, even at this level of perturbation theory.

The examples worked out in the next Section show that, in general, Eq. (17) evaluates to something propor-
tional to the variance of a generalized coordinate in the state |psi0〉, times the square of a time integral of some
function or derivative of 〈V 〉. This shows why a simple-minded estimate based on just a consideration of the
intrinsic fluctuations of the interaction V in the state |ψ0〉 typically yields a correct order of magnitude. It also
shows (see especially Section 3.2.2) how something like Eq. (1) comes about for a system of oscillators.

3. EXAMPLES

3.1. Switching by a (multimode) electromagnetic field

The first inquiries1–3 on the effects of the quantum nature of the control system focused on gates driven by
electromagnetic fields. Of these works, Ref. 1 dealt only with the entanglement between the field and the qubit
(an atom), whereas Ref. 3, while acknowledging the entanglement problem, derived error probability estimates
entirely from considerations of the intrinsic fluctuations in the amplitude and (especially) the phase of the field.
Additionally, the estimates in Ref. 1 and Ref. 3 are carried out in the context of a “single effective mode”
approach. The work by Barnes and Warren,2 by contrast, involves a complete multimode calculation, in order
to describe the temporal evolution of the field adequately. While this makes the problem, formally, much more
involved, it yields essentially the same order-of-magnitude estimates for the error probability as the simpler
analyses of Ref. 1 and Ref. 3, all of which are in agreement with Eq. (1). Inasmuch as all these papers dealt
explicitly only with gates which, like the CNOT or Hadamard gates, typically do not conserve energy and/or
angular momentum (unless they are done on encoded qubits, as mentioned in the Introduction), this result is,
in fact, only to be expected, according to Ozawa’s theorem4: the number of “ancillary bosonic qubits” needed
to perform the gate should go as 1/ε, and, in the case of the electromagnetic field, each one of those bosons (a
photon) will have an energy of the order of h̄ω, where ω is some central “carrier frequency.”
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For this reason, in Ref. 7, I chose to look at a totally hypothetical model in which a coupling of the form HI =
V |11〉〈11|, introduced in subsection 2.1, is mediated by an electromagnetic field, with VI(t) (in the interaction
picture) being some kind of simple function of the (multimode) electric field operator. Although this does not
describe exactly any scheme that I know of, it lends itself to simple analytical treatment and illustrates the
general consequences of the requirement p < ε, when taken together with (3). Moreover, the case of a quadratic
coupling is probably relevant to schemes involving the Kerr effect to achieve conditional phase gates.

3.1.1. Linear coupling

Assume linear coupling, and a multimode coherent state:

HI = VI(t)|11〉〈11| ≡ h̄

(∑
k

gkake
−iωkt + H.c

)
|11〉〈11| (18)

|ψ0〉 =
∏
k

|αk〉. (19)

The condition (16) then reads ∫ ∑
k

gkαke
−iωktdt + c.c. = π (20)

When (17) is used to evaluate the error probability p, and p < ε is required, one obtains the condition

∑
k

∣∣∣∣
∫

gke
−iωktdt

∣∣∣∣
2

< ε (21)

However, from (20) we get that ∑
k

|αk|
∣∣∣∣
∫

gke
−iωktdt

∣∣∣∣ ≥ π

2
(22)

Then (21) is only possible if (∑
k

|αk|2
)1/2

≥ π

2
√
ε

(23)

The pulse’s “average frequency” is

〈ω〉 =
∑

k ωk|αk|2∑
k |αk|2

≤ 4ε
π2

∑
k

ωk|αk|2 (24)

and the total pulse energy is
Efield =

∑
k

h̄ωk|αk|2 (25)

so

Efield ≥ π2

4
h̄〈ω〉
ε

(26)

For an oscillatory field, with a well-defined “carrier frequency” ω0, this is essentially Eq. (1). I believe that
Eq. (26) should also hold for a “static” field, switched on and off over a time T , in which case 〈ω〉 ∼ 1/T , and
we get Eq. (2).

Proc. of SPIE Vol. 5115     159



3.1.2. Nonlinear coupling

More generally, assume that the Hamiltonian is of the form:

HI = h̄gEq(t)|11〉〈11| (27)

with g a time-independent coupling constant, and q an arbitrary integer. Let E(t) be the multimode electric field
operator

E(t) =
∑

k

√
h̄ωk

2ε0V
ake

−iωkt + H.c (28)

It is understood that the sum over frequencies is limited by the natural frequency response of the system. Let
E = 〈E〉 + ∆E . Then we can write

∆VI = h̄gq〈E〉q−1∆E
= h̄gq〈E〉q−1

×
∑

k

√
h̄ωk

2ε0V

(
∆ake

−iωkt + ∆a†ke
iωkt

)
(29)

The error in the operation of the gate can be estimated, as before, using (17):

1
2h̄2

∫ T

0

dt

∫ t

0

dt′〈ψ0|∆VI(t)∆VI(t′)|ψ0〉+ c.c. =
∑

k

∣∣∣∣∣qg
√

h̄ωk

2ε0V

∫
〈E〉p−1e−iωktdt

∣∣∣∣∣
2

(30)

whereas, on the other hand, we want

g

∫
〈E〉qdt = π (31)

and the left-hand side of this expression can be written as

∑
k

g

√
h̄ωk

2ε0V

∫
〈E〉q−1αke

−iωktdt + c.c. (32)

The two conditions ∑
k

αk

∫
g

√
h̄ωk

2ε0V
〈E〉q−1e−iωktdt + c.c. = π (33)

and ∑
k

∣∣∣∣∣
∫

g

√
h̄ωk

2ε0V
〈E〉q−1e−iωktdt

∣∣∣∣∣
2

<
ε

q2
(34)

are formally equivalent to (20) and (21) with a time-dependent gk and a modified ε, and so the same logic applies
to yield for the total field energy

Efield ≥ π2

4
q2h̄〈ω〉

ε
(35)

As long as q2 ≥ 1 (i.e., the Hamiltonian is an analytic function of the field) this condition is at least as restrictive
as (26).

3.1.3. Squeezing?

In a coherent state, both “quadratures” of the field-amplitude operator ak have the same noise. One could
imagine a Hamiltonian that couples only to one quadrature, which could then be squeezed.

What might happen then could be roughly as follows. The fluctuations (squared) in the squeezed quadrature
would be reduced by a factor e−2r, where r is the squeezing parameter. This could amount to formally increasing
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ε in Eq. (21) by a factor e2r. Note that the number of photons in the field is now given by |αk|2 + e2r, so, in
fact, the equation for the field energy might end up reading

Efield ≥ h̄〈ω〉
(

1
e2rε

+ e2r

)
(36)

When this expression is minimized over r, one obtains

Efield ≥ 2h̄〈ω〉√
ε

(37)

Note, however, that to couple to a squeezed field one typically needs a local oscillator at the carrier frequency
ω. Presumably, if ω is not sufficiently sharply defined, errors in the gate operation will result. This means that
broadening of ω due to the finite pulse duration must be prevented. If the condition

(ωT )2 >
1
ε

(38)

is applied to equation (37), one obtains again

Efield ≥ h̄

εT
(39)

Thus, it seems that even using squeezing one is still constrained by the inequality (39). A more careful study of
this possibility, however, may be necessary, ideally in the context of a specific model for the coupling interaction.

3.2. Switching using collisions between wavepackets

3.2.1. “Free” particles

Suppose one arranges to have a collision between the two particles involved in the gate operation, with the idea
that their mutual interaction, V (|r1−r2|), will provide the desired phase shift. Work in the center of mass frame
assuming identical particles; neglect deviations of the particles’ motion from straight lines at constant speed; let
b be the distance of closest approach and take that to be the x direction. Then we can approximate Eq. (16) as

∫ T

0

〈VI(t′)〉dt′ �
∫ T/2

−T/2

V (
√

4v2t2 + b2)dt ≡
∫ T/2

−T/2

V (ρ(t))dt = πh̄ (40)

where ±v is the y-component of the particles’ velocity in the CM frame, and ρ = (4v2t2 + b2)1/2.

In practice the free wavepackets’ x coordinate is uncertain by an amount equal to

∆x(t) = ∆x0 +
∆p0

m

(
t +

T

2

)
(41)

assuming that x and p are initially uncorrelated (at the time t = −T/2). We can use this, in an expansion of V ,
to approximate ∆VI as (dV/dρ)(dρ/db)∆x which, when substituted in Eq. (17), yields, for the error probability,

p =
b2

h̄2

(∫
dV

dρ

dt

ρ

)2 (
∆x2

0 +
T 2∆p2

0

4m2

)
(42)

with ρ = (4v2t2 + b2)1/2, and making use of the symmetry of the integrands.

One can now minimize p with the constraint ∆x0∆p0 ≥ h̄/2 (i.e., pick an optimal wavepacket), with the
result ∆x2

0 = T h̄/4m, ∆p2
0 = 2mh̄/T . Then the condition p < ε becomes

b2

h̄2

T h̄

2m

(∫
dV

dρ

dt

ρ

)2

< ε (43)
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Now use (40) to eliminate the first factor of 1/h̄2, and consider the derivative of the left-hand side of (40) with
respect to the impact parameter b. One easily obtains the constraint

π2T h̄

2m

[
d

db
ln

(∫ T/2

−T/2

V (
√

4v2t2 + b2)dt

)]2

< ε (44)

This can be simplified a bit by, first, introducing the obvious change of variable 2vt = y, with limits of integration
±y0 = ±vT , and then assuming that y0 is large enough that no substantial error is introduced by extending the
integration to ±∞. This is reasonable, since the particles have to start and end far enough away from each other
for their mutual interaction to be negligible. We then have

π2T h̄

2m

[
d

db
ln

(∫ ∞

−∞
V (

√
y2 + b2)dy

)]2

< ε (45)

The left-hand side of (45) is easily evaluated when V (ρ) is any power law, since one can write (y2 + b2)−n/2 =
b−n((y/b)2 +1)−n/2 and then the change of variable y/b = u results in a factor of b−n+1 times an integral which
is independent of b. Hence for any n > 1, we get

π2T h̄

2m
(n− 1)2

b2
< ε (46)

and, since, as argued above, we must have b < y0 = vT , this yields immediately

h̄

mv2T
< ε (47)

or
mv2 >

h̄

εT
(48)

where mv2 is the initial kinetic energy of the two particles.

3.2.2. Particles in a harmonic potential

To prevent spreading of the wavepackets during the interaction, one could imagine confining the particles in
a static potential (a time-dependent potential implies a time-dependent field, and we are back to the previous
Section). Assume the potential is harmonic, and consider the following scenario: at time t = 0 we create the
two wavepackets, a distance 4A + b apart, let them oscillate towards each other with amplitudes A, so that, at
the time t = π/ω, they are closest, a distance b apart; then they swing back to the starting position by the
time t = 2π/ω. At a minimum, one needs to put in and remove enough energy to start and stop this pendulum
motion. Just how this is done is left vague for the moment, but it might be important later on.

In any case, assume that we have an interaction energy V (ρ), as before, but now only in one dimension, with

x1 = −
(
A +

b

2

)
−A cosωt

x2 =
(
A +

b

2

)
+ A cosωt (49)

and ρ = x2 − x1 = 2A + b + 2A cosωt. The desired action is again, approximately,

1
h̄

∫ 2π/ω

0

V (ρ)dt = π (50)

The error operator ∆x for a harmonic oscillator is

∆x = ∆x0 cosωt +
∆p0

mω
sinωt (51)
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so we find, proceeding as before,

p =
1
h̄2

[(∫
dV

dρ
cosωt dt

)2

∆2x0 +
(∫

dV

dρ
sinωt dt

)2 ∆2p0

m2ω2

]

=
1
h̄2

(∫
dV

dρ
cosωt dt

)2

∆2x0 (52)

The contribution of ∆p0 vanishes due to the symmetry of the integration, which raises again the possibility of
using squeezing to improve on the constraint to be derived presently. For the moment, however, assume simply
that a coherent state wavepacket is excited; then ∆x0 is just the ordinary zero-point fluctuation of the ground
state of a harmonic oscillator, ∆2x0 = h̄/2mω, and now the constraint we have is

π2h̄

2mω

(∫ 2π/ω

0

dV

dρ
cosωt dt

)2

(∫ 2π/ω

0

V (ρ) dt

)2 < ε (53)

The integrals in this case do not seem so easy to evaluate in general, but specific cases can readily be done. For
instance, for a dipole-dipole ρ−3 interaction one finds to leading order in b

π2h̄

2mω

(
5
2b

)2

< ε (54)

Note that the energy of each oscillator is 1
2mω2A2, that the interaction time T = 2π/ω, and that, as before,

we’ll want A > b, so again we find that
1
2
mω2A2 >

50π3

16
h̄

εT
. (55)

Note that we could, equivalently, envision a situation in which the same effect is achieved over a large number
(say, N) of cycles, so that V (ρ) in (50) is reduced by a factor of N and the integral extends to a time 2πN/ω.
Because of the periodicity of the motion, however, all such integrals (particularly in (53)) are equal to just N
times the integral over a single period; all the factors of N cancel from (53), and one is left again with the result
(54), which now leads to

1
2
mω2A2 >

25π2

16
h̄ω

ε
(56)

This shows explicitly how the constraint (1) originates. Going over the derivation, one can see that ω appears
in it because it characterizes the size of the minimum-uncertainty oscillator wavepacket (coherent state), and
provides a connection between this quantity and the oscillator’s energy.

As mentioned above, it looks as if one could use a squeezed state (squeezed in the position variable) to
improve on the constraint (55). This is because ∆2p0 does not appear in Eq. (52), which in turn follows from the
symmetry of the integral over the unperturbed trajectory. Numerical calculations done for a classical particle,
however, show that (as is only to be expected), as a result of the interaction, the particle does not return exactly
to the starting point. The importance of this mismatch between the perturbed and unperturbed wavepackets
would only be magnified if the quantum wavepacket was squeezed in position. Hence, there has to be a limitation
to how much one can squeeze the position, but it does not seem a simple matter to derive it. Specifically, it
seems that, in the formalism used here, these effects would appear to a higher order in the expansion (52) (or,
more precisely, in the expansion of Eq. (6) that yielded Eq. (17)).

There may actually be good self-consistency reasons to go to higher orders in ∆p2 or ∆x2, in the case of
large squeezing. If one has a state that is squeezed in position, say, enough to change the dependence of the
minimum energy on ε, from ε−1 to ε−1/2 (the best achievable in any case, by the arguments of Section 3.1.3), the
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squeezing factor e−2r in ∆2x0 would have to be of the order of
√
ε. In that case, the corresponding factor e2r

in ∆2p0 would be of the order of 1/
√
ε, and in ∆4p0 it would be of the order of 1/ε. This suggests that in case

of such extreme squeezing, one would not be justified to neglect the higher order terms (in particular, terms of
order ∆4p0) in (52). This point probably deserves a closer look.

4. ATOM-LIKE QUBITS AND SPONTANEOUS EMISSION

A common feature of all the studies mentioned at the beginning of Section 3.1 is that spontaneous emission
into any modes other than the driving field mode was neglected. More precisely, the atom-like qubit (which,
depending on the specific realization, could be an actual atom, an ion, an exciton in a quantum dot, etc.) was
taken to interact only with occupied modes of the quantized electromagnetic field. This is natural, since the
original goal of this research was to find out what decoherence is induced by the quantum nature of the control
field , and not by anything else. Nonetheless, something very interesting happens when the unoccupied (vacuum)
modes are brought into consideration.

It has been known for a long time11, 12 that a multimode quantum field in a coherent state can be reduced, by
means of a unitary transformation, to a classical field plus a set of modes in the vacuum state. In this picture, the
decoherence discussed in Section 3.2 (and in Refs. 1–3) would seem to be directly attributable to the “vacuum”
modes that replace the modes actually occupied by the control e.m. field. But if this is the case, then one may
expect that the other vacuum modes, neglected in the above analysis (because they truly are in the vacuum
state) may have a similar decoherence effect: similar, that is, in scaling and in order of magnitude, and different,
mostly, by a geometrical factor that takes into account their number, relative to the number of modes occupied
by the control field.

Consider, for definiteness, a laser beam of cross-sectional area A interacting with an atom. To describe such
a beam as a superposition of transverse plane waves may require a spread in k⊥ of the order of ∆k⊥ ∼ 2π/

√
A.

In k space, the modes required, therefore, fill a solid angle of the order of ∆Ω = ∆k2
⊥/k2 = λ2/A. The ratio of

the number of such modes to the total number of modes in all directions of space is ∆Ω/4π. Accordingly, it may
be expected, on the basis of the picture suggested above, that the decoherence calculated in Section 3.2 is only
a fraction, of the order of λ2/4πA, of the total decoherence due to all the quantum modes—both those initially
occupied by the control beam, and those initially empty. If this is the case, then to include all the modes one
would merely rewrite the error probability, which by (1) is given by 1/n̄ (n̄ being the average number of photons
in the pulse), as 4πA/λ2n̄, and the requirement (1) would be replaced by

Emin ≥ 4πA
λ2

h̄ω

ε
(57)

which can be rewritten as a constraint on the minimum energy density (energy per unit area) in the beam:(
E

A

)
min

=
4πh̄ω
ελ2

. (58)

The quantity on the left-hand side of (58) is a useful one to work with, because it is directly proportional to the
magnitude of the classical Poynting vector, and hence to the square of the classical electric field.

Here is, however, yet another alternative way to look at things. The effect of the modes which are truly in
the vacuum state originally can only be to provide an avenue for spontaneous emission to take place. Hence, if
the reasoning above is correct, it follows that one should be able to get a constraint of the form (58) merely from
the requirement that spontaneous emission be negligible during the time it takes to perform the logical gate.

This is indeed the case, as can be seen from the following. Let the spontaneous emission rate be Γ, and
let the time needed to perform a logical operation on the atomic qubit be T . Then, if ε is the tolerable error
probability, we clearly require

ΓT < ε (59)
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which means that one needs to apply a sufficiently strong field to the atom (we are reasoning semiclassically
now), since T will be inversely proportional to the Rabi frequency ΩR. Let’s assume, for the sake of argument,
that T = π/ΩR. Then (59) can be rewritten as

π2Γ
Ω2

RT
< ε (60)

or, using standard expressions9 for Γ and ΩR,

π2

4πε0
4ω3d2

ab

3h̄c3

(
dabE0

h̄

)−2

< εT (61)

(where dab is the atomic dipole moment and E0 the field amplitude). Now use ω = 2πc/λ and note that the e.m.
field’s energy density is 1

2ε0E2
0 . One gets the constraint

1
2
ε0E2

0 (σtot cT ) > π2 h̄ω

ε
(62)

where σtot = 3λ2/2π is the total scattering cross-section for an atom in free space, and in resonance (see Ref. 12,
p. 533). In words, the number of photons within a volume V of cross-sectional area σtot and length cT (the
length of the pulse) has to be greater than 1/ε. Note that this condition actually implies Eq. (1), since, due to
diffraction, it would not realistic to expect that the pulse could be focused to a cross-sectional area smaller than
σtot; hence, the total energy in the whole pulse must be greater than the right-hand side of (62).

The required energy per unit volume, 1
2ε0E2

0 , follows from (62) by dividing both sides by σtot cT , and the
energy per unit area is obtained then by multiplying both sides by cT , the length of the pulse. The result is(

E

A

)
min

=
2π3h̄ω

3ελ2
. (63)

which is the same order of magnitude as Eq. (58). Hence, we can obtain Eq. (58) in two ways: either by the
conventional requirement that spontaneous emission be negligible during the performance of the quanum logical
gate, or by applying to the right-hand side of Eq. (1) a correction factor of the order of λ2/4πA, which is meant
to represent the fraction of modes of the quantized e.m. field occupied by the “control” beam.

There are a couple of ways to look at this result. One is to say that the quantum nature of the control field
does not, in fact, introduce any constraints on the performance of the gate, beyond those that were already
implicit in the requirement that spontaneous emission in all available modes during the gate operation should
be negligible. This is true, but it could mislead one into thinking that those constraints can be made negligible
by setting up a situation (such as an atom in a microcavity) in which spontaneous emission into the originally
unoccupied modes is strongly suppressed. As this is not the case, it is probably better, and less misleading, to
say that the constraint (1) correctly accounts for that part of the total decoherence due to the quantum nature
of the control beam, which must be there in any case, even if spontaneous emission in all the other modes is
suppressed somehow.

Finally, and for completeness, it may be useful to point out that Eq. (62) also holds for the case, treated in
Ref. 3, of a transition driven by detuned Raman lasers. In that case, it can be argued that the atom only spends
a time of the order of 1/∆ in the excited (intermediate) state, and hence the loss of purity due to spontaneous
emission would be limited to Γ/∆, regardless of T ; but, for large detuning, one has also an effective two-photon
Rabi frequency of the order of Ω2

R/∆, so by combining Γ/∆ < ε with Ω2
RT/∆ = π, and eliminating ∆, one

immediately obtains Eq. (60), and the rest proceeds as above.

5. DISCUSSION AND CONCLUSIONS

The possible implications of the results presented here for hypothetical very large-scale quantum computations
have been already discussed at some length in Ref. 7. Here only a couple of order-of-magnitude estimates will
be given.
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Suppose one uses as the control system an electromagnetic field at optical frequencies (ω ∼ 1015 rad/s). Let
the tolerable failure probability ε ∼ 10−5. Then the minimum energy per logical operation required by (1) is
of the order of 10−14 J. The corresponding energy density (63) would be of the order of 1 J/m2. To convert
this to power, one would need to know the duration of the gate, T , which in turn would be constrained by
the decoherence time τc: one must have T < ετc. For a coherence time of the order of 1 ms, therefore, one
would have T < 10−8 s and hence a minimum intensity (power per unit area) of the order of 108 W/m2, or
104 W/cm2. In empty space may not be excessive, but in a solid-state system (which is likely to have an even
shorter decoherence time) it may well be.

Generally speaking, the considerations presented here favor systems that have long decoherence times and
rely on static, rather than oscillatory, fields for the performance of the logical gates.

In any case, one should note that the inverse relationship (2) between the speed of a gate and the energy
needed to carry it out indicates that quantum computers will not exhibit the same trend of decreasing size and
increasing speed which conventional computers have exhibited under Moore’s law.

There are still open questions regarding the theoretical results presented here: how difficult would a general,
formal, rigorous proof be? Is the main claim (7) provable only for systems, like harmonic oscillators and free
particles, where the energy is a quadratic function of generalized coordinates? If so, is it only true for coherent
states, or could “nonclassical” states, such as squeezed states, be more useful? Interesting as these questions are,
from a theoretical point of view, their practical relevance is somewhat limited, since the present results already
appear to cover all important systems, and the generation of nonclassical states is typically a very inefficient
process, so it is unlikely to lead, in practice, to a reduction in the energy requirements.
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