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ABSTRACT 
 

In this paper we present our work analysing electroencephalographic (EEG) signals for the detection of seizure 
precursors in epilepsy.  Volterra-systems and Cellular Nonlinear Networks are considered for a multidimensional signal 
analysis which is called the feature extraction problem throughout this contribution. Recent results obtained by applying 
a pattern detection algorithm and a nonlinear prediction of brain electrical activity will be discussed in detail. The aim of 
this interdisciplinary project is the realization of an implantable seizure warning and preventing system. 
 
Keywords: epilepsy, nonlinear signal analysis, precursor detection, Volterra-systems, Cellular Nonlinear Networks, 
seizure warning 
 
 

1. INTRODUCTION 
 

The realization of intelligent medical devices is of rapidly increasing importance for a successful treatment of patients. 
Although, great efforts have been made in a lot of interdisciplinary investigations leading e.g. to improved non-invasive 
blood testing devices 18, 19, symptom-based disease diagnosis systems, cochlea implants and neurostimulators, the 
development of an implantable brain controlling system with stored programmability remains unsolved up to now.  
Naturally, necessary requirements are very often miniaturization, a low-power realization technique and the capability 
of supercomputer to allow a real-time multidimensional signal processing with complex algorithms. Electronic devices 
based on Cellular Nonlinear Networks which own these characteristics have approximately a size of 1cm2.  A Cellular 
Nonlinear Networks Universal Machine 20 is a tera (1012) instructions per second brain-like supercomputer on a chip 
with stored programmability. Considering a chip realization of these networks as a possible intelligent implantable 
medical device for a brain the real challenge is the determination of the cell coupling structure and the derivation of the 
neural algorithm to solve a certain problem. In this paper the detection of precursors of epileptic seizures by Cellular 
Nonlinear Networks is treated 
 
Worldwide approximately 1 % of the population suffer from a recurrent malfunction of the brain termed epileptic sei-
zure. Because of the sudden occurrence of seizures, which characterize the disease epilepsy, very often a high risk of 
injury has to be taken into account.  Presently, regarding e.g. 200 000 affected individuals in the Federal Republic of 
Germany there is no applicable therapy for about 25 % of all patients, i.e. a satisfactorily seizure control by antiepileptic 
drugs or in an epilepsy surgery the removal of the focal area of the brain from where the seizures originate. Since EEG 
signals represent the electrical activity of populations of neurons, a multidimensional signal analysis in a preseizure state 
may uncover brain dynamics finally leading to the onset of an epileptic seizure 21, 22. The main problem, which has been 
treated in a lot of interdisciplinary investigations, is the determination signal features reliably allowing seizure precursor 
detection. Although, seemingly the application of recently introduced nonlinear analysis procedures 2-5 provides infor-
mation predictive of an impending seizure in several cases, the so-called feature extraction problem is still an exciting 
challenge. 
 
Cellular Nonlinear Networks and Volterra systems are considered for the feature extraction problem in epilepsy in this 
overview of our work. While the above mentioned systems are introduced in section 2, different feature extraction 
algorithms the so-called pattern detection algorithm and procedures for a prediction of EEG signals are presented in 
section 3.  While these networks have been used for a prediction and pattern detection, first results for a signal predic-

Keynote Address

Bioengineered and Bioinspired Systems II, edited by Ricardo A. Carmona,
Gustavo Liñán-Cembrano, Proceedings of SPIE Vol. 5839 (SPIE, Bellingham, WA, 2005)
0277-786X/05/$15 · doi: 10.1117/12.609226

39



tion have been obtained with Volterra systems. A detailed discussion of all results will be given in section 4 and finally 
a conclusion in section 5. 
 
 

2. VOLTERRA SYSTEMS AND CELLULAR NONLINEAR NETWORKS 
 
2.1 Volterra systems (VS) 
 
By analysing a nonlinear RLC circuit VS have been considered for the first time by Wiener 13 who developed in his 
famous work a comprehensive theory 15, the so-called Wiener theory of nonlinear systems.  VS are defined by n-linear 
time-invariant operations based on functionals which have been introduced by the Italian mathematician Vito Volterra 14 
studying certain integral and integro-differential equations. Although, a broad class of nonlinear systems could be 
identified by VS 23 usually weakly nonlinear cases are treated because of a considerable calculation complexity for 
strong nonlinearities. In this contribution time-discrete k-th order VS are considered represented by  
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As shown in Fig.1 y(tn)  is the system output to a excitation x(tn) and hm(τ1,…,τm) denotes the Volterra kernel of the ho-
mogeneous system Hm[x(tn)]. Especially, we assume in the following causal and BIBO stable sytems.  
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Fig. 1 n-th order Volterra system 
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Different algorithms allowing an precise determination of Volterra kernels have been proposed and studied in several 
investigations 24. While Schetzen calculated the m-th order impulse response and introduced a higher order cross cor-
relation method, an algorithm for homogeneous systems 25-27 based on the determination of higher order cross spectra 
has been generalized by Koukoulas 12 to non-causal non-homogeneous VS. Unfortunately these methods are based on 
stationary Gaussian input processes. As shown in 11 Eqn. 1 can be transformed into a normal equation allowing a 
calculation of Volterra kernels through a matrix inversion. In our investigations we followed this way and applied a RLS 
algorithm 2 in all cases.  
 
 
2.2 Cellular Nonlinear Networks (CNN) 
 
Since CNN have been introduced 1988 by Chua and Yang 28 these networks became a paradigm for nonlinear 
information processing. According to a later given generalized definition 1 consists a CNN of spatially discrete 
nonlinear dynamical systems which are coupled within a prescribed sphere of influence to all neighbouring systems 
called cells.  While by applying the pattern detection algorithm the so-called Chua-Yang model represented by the 
system  
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of locally coupled nonlinear differential equations is used, we consider for the prediction problem autonomous multi-
layer discrete-time networks (DTCNN) with state equations of the form  
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xi

l(tn+1) denotes the state of the i-th cell Ci in layer l at time tn+1,  Si(r) is the sphere of influence of a cell with radius r and  
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The well known nonlinear function  
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assumed without loss of generality for DTCNN throughout this contribution. 
 
 
 
 

3. FEATURE EXTRACTION  
 
The most challenging problem for the realization of an implantable system simply giving a warning before the onset of 
an epileptic seizure is the derivation of appropriate feature extraction methods allowing reliable precursor detection with 
high sensitivity and specificity 6. In comparison to a classical analysis of EEG signals which has been performed in 
several investigations 29 e.g. by using spectral analysis procedures or by calculating autoregressive moving average 
models,  recently introduced nonlinear EEG analysis methods clearly contributing to the precursor detection problem. 
Lehnertz 21 showed that values of an effective correlation dimension were decreased prior to seizure onset. Furthermore, 
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Sowa 8 used CNN to estimate the phase synchronization between time series obtained from different recording channels 
and observed a long-lasting drop of synchronization before a seizure as compared to values in a seizure-free period. In 
earlier studies 9 we have derived a CNN algorithm allowing an approximation of the above mentioned effective 
correlation dimension with a high accuracy. Furthermore, we proposed procedures for a prediction of EEG signals by 
VS 2 and DTCNN 3 and presented a pattern detection algorithm 4 by using a Chua-Yang model of a CNN. Finally, in 
first investigations 10 we consider reaction-diffusion CNN for a modelling approach.  While the prediction of EEG 
signals and the pattern detection algorithm is discussed in this overview, the results obtained for reaction-diffusion CNN 
are given in a further paper.  
  

 
3.1 Prediction of EEG signals  
 
VS and DTCNN have been considered for a prediction of  EEG signals using different recordings of brain electrical 
activity of 6 patients obtained in invasive multi-electrode presurgical evaluations 30. A detailed description of the used 
data base is given in section 4.  By minimizing a quadratic error measure in all cases a nonlinear predictor has been 
determined for each data segment of an EEG recording. Following this way we obtain a time-sequence of predictor 
parameter for each recording which has to be analyzed with regard to distinct changes before the onset of an epileptic 
seizure. While in a signal prediction with VS according to 
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only previous values )(,),( 1 mnn txtx −− K  of same electrode will be taken estimating )( ntx  also values of 

neighbouring electrodes or electrode arrays are taken by using the above mentioned single or multilayer DTCNN, the 
prediction scheme is shown in Fig. 2.  
 
 
 

Fig, 2a Prediction scheme for EEG signals using VS. AD conversion and pre-processing steps are not shown for the 
sake of convenience 
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Fig, 2b Prediction scheme for EEG signals using single layer DTCNN whereas signal values (dashed line) of 
neighbouring electrodes will be considered in the signal prediction. AD conversion and pre-processing steps are not 
shown for the sake of convenience 
 
 
 

 
Fig, 2c Prediction scheme for EEG signals using multilayer DTCNN whereas signal values (dashed line) of 
neighbouring electrodes and of different electrode arrays (dotted line) will be considered in the signal prediction. AD 
conversion and pre-processing steps are not shown for the sake of convenience 
 
 
 
In order to analyse the nonlinear strength of the obtained VS and DTCNN predictor for successive data segments the so-
called nonlinear strength 
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has been calculated for VS where hn,m(τ1,…,τn) denotes the n-th order Volterra kernel of the m-th data segment. 
Similarly 
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was considered in the analysis of single and multilayer DTCNN in all cases. 
 
 
 
3.2 Pattern detection by CNN 
 
In the pattern detection algorithm (PDP) a statistical analysis of EEG signals will be performed in a way similar to a 
classical level crossing analysis of stochastic processes 31-33, it should be noted that not a detection of certain signal 
pattern will be treated. Assuming that the signal of a data segment m could be regarded as the realization of an almost 
stationary random process ξm (t) then as shown in Fig. 3 the joint probability will be determined that ξm (t) is below or 
above a given  level R at times ti, i=1,…,n. 
 
 

Fig. 3 Event of the pattern detection algorithm. While ξm (t) is below a certain level R at t1, t3 and t5 it is above R at t2 
and t4. 
 
In this paper the occurrence frequency of above mentioned events will be estimated and distinct changes of it detected 
for successive data segments by using Chua-Yang CNN. Therefore normalized data segments with zero mean have been 
binarized for different level values R, an example is given Fig.4. 
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Fig.4 Normalized binary valued EEG signal ξm,b(t)  with zero mean vs. t 
 

 
Then, as shown in Fig. 5, data segments of ξm,b(t) are stored linewise as inputs on two-dimensional CNN leading to an 
image with binary pattern. Throughout this contribution we consider pattern with 3x3 pixels, i.e. we study the  
 

ξm(t) 
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Fig. 5 EEG data segment stored as input on a two-dimensional CNN leading to an image with binary pattern 

 
occurrence of events by CNN defined at t1,…,t9 allowing the application of the well-known pattern detection template 36 
on existing CNN based electronic devices 34, 35. In this way event counting or event detection is performed through 
pattern counting or pattern detection on a CNN.  Obviously, for 3x3 pixels there are altogether 29=512 different pattern 
possibly repeated occurring within a data segment, i.e. in order to adapt the PDP to a patient the probability concerning 
all 512 pattern has to be analysed in a pre-processing evaluation for successive segments with regard to distinct changes 
before the seizure onset.  By using a programmable device the obtained results may lead e.g. to an application of the 
PDP on a patient detecting changes of a certain pattern occurrence as a possible precursor of an impending seizure.   
 
By focusing on those patterns having a single occurrence in a data segment a generalized form of the PDP has been 
applied to EEG recordings of all patients of our database in recent investigations 4 and in the framework of this paper. 
Thereby, also the joint probability concerning EEG signals of different electrodes will be studied in a so-called Pattern 
Occurrence Image (POI), i.e. a seizure warning follows if a pattern jointly occurs m times in n segments in order to 
render the generalized definition more precisely. An example is given in Fig. 6. 
 

 
 

Fig. 6 Example of a POI allowing the analysis of brain electrical activity through a time window, shifted over the result 
of the PDP. The windowing operation is followed by a thresholding. In each line of the image the occurrence of one 
pattern encoded by black pixels is shown for successive data segments.  In this case a seizure warning is follows when 
the window covers more than 2 pattern occurrences. 
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4. RESULTS 
 
4.1 Database  
 
The results presented in this contribution are obtained for several invasive recordings of the electrocorticogram (ECoG) 
or the stereo-EEG (SEEG) via implanted electrodes from 6 different patients. An implantation scheme is given in Fig. 7 
as an example.  The recording of bio-electrical activity in different anatomical regions of a brain has been performed in 
the Clinic of Epileptology of the University of Bonn in the framework of presurgical evaluations. 
 
 

 
 

Fig. 7 Example of an implantation scheme 
 
Multi-channel short term recordings as well as long-lasting recordings of EEG signals have been considered in our 
studies. The data base comprises short term recordings of 5 different patients including 11 clinical seizures and duration 
not longer than about 30 to 90 minutes.  In all cases non-overlapping data segments with 5192 and 7200 values have 
been processed equivalent to a period of 30 seconds at sampling rates of 173 Hz and 260 Hz. Furthermore long-lasting 
recordings have been analyzed in our studies. In this paper results are given for a patient whose data consists of 16 
successive recordings of EEG signals altogether covering a period of 6 days. This data were obtained at a sampling rate 
of 200 Hz resulting in segment lengths of 6000 values (30 seconds) and 3000 values (15 seconds). No pre-processing 
has been applied to the EEG time series.   
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4.2 Prediction of EEG signals by means of VS 
 
In a first study a nonlinear prediction of EEG time series with zero mean - normalized to a range 1 ≥ x(tn) ≥ -1 - has 
been performed by VS using all short term recordings of 4 different patients. Thereby, in nearly all cases Volterra 
kernels of third order systems as defined in Eqn. 6 have been determined by applying a RLS 11 based algorithm with 
reduced calculation complexity.  Regarding our results, an accurate prediction of EEG signals by VS has been obtained 
throughout our investigations. Exemplarily, a typical result is given in Fig. 8. In order to minimize the mean square error  
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for a certain data segment, the coefficients of the Volterra kernels were determined in this case by using the Variable 
Metric Method 37. Here, xVS(tn) denotes  the prediction result and x(tn) represents a corresponding value of the EEG time 
series. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8: Left: Prediction result vs. time obtained for electrode TBAL1  Right: Mean square error vs. iteration number  
 
 
 
In this case, the predictor has been determined for the first data segment of the electrode TBAL1.   
 
Furthermore, the obtained sequence of prediction coefficients was analyzed in detail by calculating dVS(m) for each data 
segment of all EEG recordings. In Fig. 9 results obtained from 4 different patients (a-d) are shown, giving the feature 
dVS(m) versus interval number m. In all treated cases a drop in the mean value dVS(m) can be observed before the onset 
of a seizure, which possibly points to the occurrence of a seizure precursor. This behaviour can be seen only before and 
during an epileptic seizure. Although, these observations indicate distinct changes of the nonlinear strength dVS(m) as 
compared to seizure free periods of EEG activity. These results have to be verified for long-lasting multi-channel 
recordings what will be treated in further investigations. 
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a)  

b)  

c)  

d)  
 
Fig. 9: dVS(m) vs. segment number m. The results were obtained by using the bio-electrical activity of the depth 
electrode TL06 of 4 different patients (a-d). Left : intervals without seizure  Right : intervals with seizure  
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4.3 Prediction of EEG signals by means of DTCNN  
 
The results given in the following are based on the long-lasting recording of one patient by using a DTCNN with 3 x 1 
cells and 3rd order polynomial weight functions including a delayed feedback function for T=1.  While the analysis of 
single layer networks has been discussed in a previous paper 7 a two layer autonomous DTCNN has been applied 
throughout this analysis. Therefore, 8 different templates have to be determined for each data segment in a supervised 
optimization procedure. During this process the relative MSE according to 
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has been minimized yielding a typical minimum of about 7 %. An example is shown in Fig. 10.  
 

 
 

Fig. 10: RMSE vs. iteration number by using the BFGS optimization method. 
 

In the foregoing studies based on VS time series with zero mean - normalized to a range 1 ≥ x(tn) ≥ -1 - have been 
analyzed by applying a BFGS 37 optimization method in order to minimize e(m) for successive data segments. Here, a 
typical calculation time of about 5 to 10 minutes on a 2 Ghz Celeron CPU has been necessary for each data segment in 
the simulation experiments. 
 

Fig. 11a and 11b show the features )1,1,(mDTCNNψ  and )2,2,(mDTCNNψ  as functions of the segment number m. 

Here EEG time series of the depth electrode array TL have been fed to the first layer of the considered DTCNN and 
those of the array TBAL have been fed to the second layer of the network. Obviously, there appears a distinct increase 
of both features before the seizure onsets, i.e. an increasing nonlinearity of the predictor networks occurs before a 
seizure. At the onset there is a drop indicating that already a linear prediction leads to accurate results during an 
epileptic seizure.  
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Fig. 11a )1,1,(mDTCNNψ  vs. segment number m. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11b )2,2,(mDTCNNψ  vs. segment number m.  

 
In Fig. 12a and 12b where the second layer has been fed from the brain electrical activity of the array TLL further 

results of )1,1,(mDTCNNψ and )2,2,(mDTCNNψ are given. In principle the same kind of results can be observed as for 

the first given electrode configuration: a drop at the seizure onsets occur after an increase of both features.   
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 12a )1,1,(mDTCNNψ   vs. segment number m.  
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Fig. 12b )2,2,(mDTCNNψ  vs. segment number m.  

 
Therefore comparing the results obtained for the different electrode array configurations a similar shape of the features 
can be noticed. Apparently an increase of the predictor nonlinearity before the first seizure onset starts earlier 
concerning the first configuration. This may be due to the interaction to the second layer which represents different 

electrode arrays treated.  Although remarkable changes of ´),,( llmDTCNNψ can be observed for both electrode 

configurations, these results must be verified for long-lasting recordings of other patients and will be treated in further  
studies 
 
 
4.4 Pattern Detection Algorithm 
 
Although, the PDP has been applied to all recordings of the above mentioned data base, only results obtained from a 
long-lasting recording are discussed in the following.  The joint occurrence behaviour of the chosen pattern of up to five 
electrodes was studied in order to find a distinct change before the seizure onset. In Fig. 13 the results of a POI analysis 
for three different electrodes are given.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13 : Results of the Pattern Detection Algorithm (PDP) based on three observed electrode points. Seizures are 
marked by black vertical lines, seizure warnings are marked by grey arrows. A seizure warning is given before the 
onset, when a POI-event has occurred in at least two of the three studied electrodes. 
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Therefore, our investigations show that a seizure warning may be possible if two of three different patterns occur at least 
five times in a time window of 6 data segments. The patterns and corresponding electrodes for this case are given in 
Table 1.  
 

Table 1: Electrode-Pattern-Combination used for the pdp in Fig. 13 
 

Implantation scheme electrode no. patter no. 

 

 
 

TBPR4 

 
 

15 

 
 

  222 

 
 
 

 
 

TLL03 

 
 

18 

    
 
    41 

 
 

 
 

TLR01 

 
 

22 

    
 
   308  

 
 
 
In Fig. 14 the PDP was applied to another electrode-pattern-combination. This time the occurrence of 5 different pattern 
has been observed. Thereby a seizure warning may be given when at least 3 of the studied 5 electrodes have shown the 
observed pattern.  Table 2 gives the according pattern-electrode-combinations. 

 
 
Fig. 14 : Results of the Pattern Detection Algorithm (PDP) based on five observed electrode points. Seizures are marked 
by black vertical lines, seizure warnings are marked by grey arrows. A seizure warning is given when the pattern has 
occurred at least in three of five electrodes before the seizure.  
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Table 2: Electrode-Pattern-Combination used for the pdp in Fig. 14 
 

Implantation scheme electrode no. patter no. 

 

 
 

TBPR1 

 
 

3 

 
 

  349 

 
 
 

 
 

TLL06 

 
 

13 

    
 
  145  

 
 

TLR04 

 
 

17 

    
 
  141  

 
 

 
 

TLR06 

 
 

19 

 
 

  149  

 
 
 

 
 

TL07 

 
 

27 

    
 
  237  

 
 
Comparing the results for the two shown electrode-pattern-combinations leads to the statement that the found 
occurrence behaviour in both cases is very similar to each other. Both results show that the generalized pattern detection 
algorithm may possibly lead to a seizure precursor. This has to be verified by analysing long-lasting data sets of other 
patients. 
 

5. Conclusion 
 
In this contribution we presented an overview of our work analysing recordings of the electrocorticogram (ECoG) or the 
stereo-EEG (SEEG) in epilepsy. Several feature extraction algorithms possibly allowing seizure precursor detection 
have been discussed together with different results. Especially a prediction of EEG signals by means of Volterra 
systems and Discrete-time Cellular Nonlinear Networks have been treated. The results show distinct changes of features 
extracted from the obtained predictor coefficients for successive data segments of different electrodes. The observations 
seem to point to the occurrence of precursors of impending epileptic seizures. Furthermore a generalized pattern 
detection algorithm has been applied to long-lasting recordings of a certain patient. An automatic seizure warning given 
by a CNN based electronic device by an application of this algorithm seems to be possible also for this case. 
Nevertheless these results should be verified in current work by taking long-lasting recordings of more patients.    
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