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ABSTRACT

We address anomalous transport phenomena in arrays of semiconductor nanocrystals (quantum dots): Transient
power–law decay of current as a response to a step in large bias voltage applied across the array, as well as
memory effects observed after successive applications of the bias voltage. A novel phenomenological model of
transport in such systems is proposed, capable of rationalizing both anomalous transport and memory. The
model describes electron transport by a stationary Lévy process of transmission events and therefore requires no
time dependence of system properties. The long tail in the waiting time distribution gives rise to a nonstationary
response in the presence of a voltage pulse. Noise measurements agree well with the predicted non–Poissonian
fluctuations in current. We briefly discuss possible microscopic mechanisms that could cause the anomalous
statistics in transmission.
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1. INTRODUCTION

Semiconductor nanocrystal arrays1 are important examples of macroscopic systems self–assembled from the
nanometer–size building blocks. In such arrays, nearly identical coated semiconductor quantum dots form par-
tially ordered lattices with one or more layers stacked on a substrate (hence the name, quantum dot arrays, or
QDAs).

Besides potential applications,2 dot arrays are compelling since they offer a possibility to control the Hamil-
tonian by design. This opens new ways to create systems with unconventional transport properties, as well as
to study effects of charge ordering and electron–electron interactions.

Despite the progress in synthesis and fabrication of nanocrystal arrays, the nature of electronic transport
in them is still unsettled. Proposed theoretical models of transport include mapping of collective dynamics of
charges on the dots onto the problem of interface growth,3 mapping of ordering and correlated hopping of
charges on a triangular lattice onto a frustrated antiferromagnetic spin model with long range interactions,4 as
well as a recent generalization5 of variable range hopping transport in the presense of the Coulomb gap developed
earlier for conventional semiconductors.6
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Figure 1. Typical current transient observed in Ref.7 , with the estimated exponent α = 0.63. The lower transient
illustrates the memory effect: same exponent α but a lower amplitude I0. The area in the lower left corner corresponds
to the upper bound on the charge capacitively accumulated on the array. Inset: experimental setup

2. EARLIER RESULTS IN TRANSPORT IN NANOCRYSTAL ARRAYS

Anomalous transport in QDAs has been extensively studied in Ref.7 . Below we give a brief summary of the
obtained results.

When a negative voltage step is applied to the source at time t = 0, with the drain and gate grounded, the
following are observed:

(i) A power law decay of the current
I = I0 t−α , 0 < α < 1 (1)

is always found. The law (1) has been verified to hold for up to five decades in time, from hundreds of milliseconds
to tens of hours (Fig. 1).

(ii) This is a true current from source to drain, rather than a displacement current, since the net charge corre-
sponding to (1) diverges with time. Already for observation times ∼ 103 s, the transported charge is orders of
magnitude greater than that capacitively accumulated on the array, as shown in Fig. 1.

(iii) The exponent α is non-universal. It depends on temperature, dot size, capping layer, bias voltage and gate
oxide thickness.

(iv) The system exhibits memory: Suppose the bias is off for t1 < t < t2. The current measured as a function
of a shifted time t̃ = t − t2 is of the form (1) with an amplitude Ĩ0 < I0. This is illustrated in Fig. 1, in which
the transient for long times is recorded after that for the shorter time, giving rise to a smaller amplitude. The
amplitude Ĩ0 is restored, Ĩ0 → I0, by increasing the off interval t2 − t1, by annealing at elevated temperature, or
by applying a reverse bias or band gap light between t1 and t2.

The response (1) is observed in partially ordered multi–layered arrays of II–VI semiconductor nanocrystals.
Each nanocrystal is capped with ∼1nm coating, so that electrons must tunnel to move between neighboring
sites. Although the transient response (1) has been witnessed by a number of groups,7–11 its origin remains a
mystery. It is an important problem, since ohmic conductivity of undoped QDAs is reportedly extremely small.12

Understanding the nature of the time–dependent response may shed light on the dynamics of carriers in such
systems.

It has been suggested earlier that the observed time–dependent current could be a result of time dependence
of the state of the system, either because trapping of electrons slows further charge injection from the contact9 or
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because of Coulomb glass behavior of the electrons distributed over the nanocrystals.7 However it might seem
quite implausible that system’s properties adjust in a coherent fashion over many hours to yield well–reproducible
power laws in current over at least five orders of magnitude in time in a broad variety of samples.

The purpose of this work is to suggest an alternative point of view on transport in QDAs, which does not
require time–varying system’s properties. We propose a model, based on Lévy statistics of waiting times between
charge transmission events, in which the system remains stationary in a statistical sense, but nonetheless exhibits
a transient response. The model is corroborated by the measurements of the spectrum of time–dependent current
fluctuations in CdSe QDAs, and a good agreement with the prediction of the model is demonstrated.

In the remainder of this paper we introduce a phenomenological model of transport that agrees with the
previous results and yields a certain prediction for the noise spectrum, and then summarize the results of noise
measurements and briefly discuss possible microscopic mechanisms that could be consistent with our transport
model.

3. MODEL OF TRANSPORT

The key idea of our model is that current (1) can arise in a system described by a stationary stochastic process.
Taking into account typical sample’s aspect ratio ∼ 103 µm : 1 µm, we model transport in the dot array by
assuming N � 1 identical independent conducting channels switched in parallel. Each channel is almost always
closed, and opens up at random for a short interval τ0 to conduct a current pulse that corresponds to a unit
transmitted charge (as schematically shown in the lower inset of Fig. 2). We further assume that the time intervals
between subsequent transmissions are uncorrelated, in which case the channel is completely characterized by the
waiting time distribution (WTD) p(τ) of time intervals between successive pulses. The power law decay of the
current transient is obtained by postulating that the WTD has a long tail of the Lévy type:

p(τ �τ0) � a

τ1+µ
, 0 < µ < 1 . (2)

Note that all moments of p(τ) diverge. The behavior of the WTD at short times, p(τ ∼ τ0), is not of interest,
since it does not affect the long time dynamics.

The WTD (2) yields the power law decay (1) for the mean value of the current in a single channel with

α = 1 − µ and I0 =
µ sin πµ

πa
. (3)

Qualitatively, the decrease in current with time can be understood as follows. The mean value of the waiting
time for the process (2) is infinite. Thus if the stochastic process governed by the WTD (2) started infinitely
early in the past, the expected value of the current by now would be zero. Turning the bias on at t = 0 sets
the clock for the process (2). Now, for the measurement interval t, only the waiting times τ ≤ t can occur (as
illustrated by the simulation shown in Fig. 2, note the double log scale). Observing the current over a longer
time effectively increases the chances for a channel to be closed for a larger time interval, yielding the decay in
current, the latter approaching zero at t → ∞. We note that in this transport picture the system’s parameters
that yield the WTD (2) are time independent: The process (2) is stationary, i.e. p(τ) is independent of the
measurement time t.

Continuous time random walks characterized by the Lévy WTD arise in various contexts.13 The main feature
of the Lévy statistics is the violation of the central limit theorem. To make contrast with conventional systems,
we remind what happens in a Poissonian channel characterized by the finite mean waiting time τ̄ . The mean
value of the transmitted charge Q grows linearly with time, 〈Q〉 = t/τ̄ , corresponding to a constant current. The
variance of the charge is proportional to the mean,

〈〈
Q2

〉〉
= 1

2 〈Q〉, yielding the decrease of the relative charge

fluctuation
〈〈

Q2
〉〉1/2

/ 〈Q〉 ∝ t−1/2 in accord with the central limit theorem. Contrarily, in the case of the WTD
(2), the mean transmitted charge increases sublinearly as 〈Q〉 ∼ tµ, whereas its variance is proportional to the
square of the mean,

〈〈
Q2

〉〉 ∝ 〈Q〉2. Since relative charge fluctuation does not decrease with time, transport in a
single channel with the WTD (2) is dominated by large fluctuations (Fig. 2).
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Figure 2. The net transmitted charge Q(t) in a single channel and charge 〈Q(t)〉 averaged over N =100 channels simulated
according to the WTD (2) with µ = 0.5 (plotted in the double log scale). Dashed line is a power law Q ∝ t µ. Inset:
(above) The same plot in the linear scale. The large charge noise in a single channel is due to the lack of self-averaging
for a wide WTD. (below) Current in a single channel with a wide distribution of waiting times (schematic). Short current
pulses are separated by very long waiting times τ � τ0.

Although in our model any given channel lacks self–averaging, the charge from N � 1 independent channels
averages to a smooth power law, Fig. 2, with fluctuations reduced by a factor of N−1/2. For the typical sample
geometry used in our experiments, consisting of ca. 50 layers, each layer of 1.6 · 105 dots wide and 200 dots
across, one expects large effective N and small current fluctuations, as in Ref.7 . Furthermore, the average
current obtained from the model of independent channels is unchanged even if the channels are not completely
identical, corresponding to spatially varying system properties. A simulation shows that the transmitted charge
in a system with a flat distribution of the exponent 0.45 < µ < 0.55 over a hundred channels yields average
charge that is numerically very close to that given in Fig. 2 with µ = 0.5.

4. MEMORY

Memory originates in our transport model in the way that is analogous to aging in the Lévy systems.14 Because
of large typical waiting times τ � τ0, any given channel is most likely found in a non–conducting state when the
voltage is turned off at t = t1. In addition, due to very slow dynamics of channel parameters, the channel state
is likely to remain unchanged by the time the voltage is turned back on at t = t2 > t1. In this case the channel
conducts current as if the voltage has not been turned off. However, there is some chance that the channel
changes its state (resets) while the voltage is turned off, with a probability w12 ≡ w(t2 − t1). The function w(t)
monotonically grows between w(τ0) = 0 and w(∞) = 1. The current at t = t2 as a function of a shifted time
t̃ = t − t2 is a sum over all channels:

I( t̃ ) = (1 − w12)I0 (t̃ + t2)−α + w12I0 t̃ −α . (4)

The function I( t̃) has a singular part at t̃ = 0 with the amplitude Ĩ0 = w12I0 determined by the reset probability
w12 < 1. For t2 � τ0, the first (regular) term in Eq. (4) is negligible compared to the second one. The current
(4) is dominated by the latter, yielding an apparent suppression of the measured transient amplitude. We have
verified that the reset probability w12 = Ĩ0/I0 is indeed a monotonic function of the time with voltage off. For
waiting times from 10 s to 104 s in between 100 s long transients, we measure 0.65 < w12 < 0.85; w12 → 1 when
applying a reverse bias, exposing the dots to the band gap light or waiting for longer times.
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5. FLUCTUATIONS OF CURRENT

Although the model described above is consistent with previously reported tranport measurements, it needs
to be independently justified. We now formulate a prediction of the Lévy process (2) that has to do with the
statistics of current fluctuations, rather than with current itself. It can be shown that the WTD (2) leads to a
non–Poissonian noise

〈〈I−ωIω〉〉 ∝
{

t2µ , ωt � 1 ,
tµω−µ , ωt � 1 .

(5)

Here Iω =
∫ t

0dt′ I(t′)eiωt′ . The noise (5) is proportional to 〈Iω〉2 when ω → 0, and has a characteristic power
law spectrum for large frequencies. Note that the Lévy process (2) yields the same power laws for the noise (5)
at ωt � 1 and for the current, 〈Iω〉 ∼ ω−µ, that are not altered after averaging over N channels.

Measurements of noise in nanocrystal arrays have been reported in Ref.15 . Let us briefly outline the main
results of these measurements, with more details found in Ref.15 .

We have utilized the nanocrystal arrays produced as described in Ref.7 by self-assembly of nearly identical
CdSe nanocrystals, 3 nm in diameter, capped with trioctylphosphine oxide, an organic molecule about 1 nm
long. A film of about 200 nm thick of the nanocrystals have been deposited on oxidized, degenerately doped Si
wafers with oxide thickness ≈ 200nm. The experimental setup has been similar to that utilized in Ref.7 . Gold
electrodes, fabricated on the surface before deposition of the QDA, consist of bars 800µm long with separation of
2µm. The sample has been annealed at 300C in vacuum inside the cryostat prior to the electrical measurements.
Annealing reduces the distance between the nanocrystals and enhances electron tunneling.7

To measure the noise, we have recorded 200 current transients each t = 100 s long. Measurements have been
made on a single sample continuously stored in vacuum, inside of a vacuum cryostat in the dark at 77 K. Each
current transient is recorded for 100 s with a negative bias of −90 V. These periods of negative bias are separated
from each other by a sequence of zero bias for 10 s, reverse pulse of +90 V for 100 s, and zero bias for 10 s, to
eliminate the memory effects.7 We have checked that current fluctuations for a substrate without the QDA are
several orders of magnitude smaller than with the QDA.

We have found that the Fourier transform of current, 〈Iω〉, and the noise power spectrum 〈〈I−ωIω〉〉, follow
the same power law (5) with the exponent µ ≈ 0.7 for the particular sample used. Such a behavior has been
observed over about two decades in frequencies f = ω/2π available for data recording, from f ∼ 10−2 Hz to a
few Hz.

6. DISCUSSION

Let us now briefly discuss how the Lévy process (2) can arise microscopically. The immeasurably small zero
bias conductivity in our QDAs could mean not having enough phonons to relax energy for charge hops. It is
then natural to suppose that hops occur only between aligned energy levels of the neighboring dots. The WTD
(2) with a long tail can be rationalized if the energies of these levels strongly fluctuate in time, with µ = 1

2
corresponding to the Gaussian diffusion of energy levels. One can think of at least two reasons for the level
fluctuations. First, the energy ∼ 0.1 eV due to bias drop dissipated per hop may provide the levels with the
necessary energy reservoir. Second, current–induced fluctuations in the electrostatic environment in the absence
of screening may result in a random time–dependent chemical potential for each dot.

Continuous time random walks with power law WTDs (2) also arise when the system dynamics is determined
by a broad distribution of time scales, e.g. trap escape times in amorphous solids yielding dispersive transport
in photoconduction.16 However, in the case of a constant supply of carriers the current grows with time17 at a
constant bias. This is explained by gradually filling in of the traps thus smoothing the potential for the carriers,
effectively increasing the sample conductivity with time.

Remarkably, Lévy statistics was recently observed in fluorescence intermittency of individual nanocrystals.18

It is quite possible that further progress in understanding the microscopic mechanism of the anomalous transport
can be achieved by establishing a connection between the statistics of fluorescence and of charge transmission in
the same sample. This could discriminate between transport due to the nature of the excited state in a single
nanocrystal and collective transport phenomena.
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7. CONCLUSIONS

To conclude, we presented a novel mechanism for a non–ohmic conductivity in a disordered system. In particular,
we showed that a non–stationary current response can arise in a stationary system with the Lévy statistics of
waiting times. The model agrees well with the current and noise measurements in arrays of coated semiconducting
nanocrystals. Our results suggest that the notion of conductivity in QDAs (used e.g. in10) may be ill–defined
since the latter implies Poissonian statistics in transmission. We also demonstrated that noise can help to
investigate the system even without precise knowledge of its microscopic transport mechanism. The latter is yet
to be clarified by further studies.
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