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ABSTRACT 

Sensor networks are finding application as monitoring systems and as tools in the study of complex 
natural systems.  In either situation, the primary goal is computation of some inference from the 
observations and available models. From this basic problem flows a broad set of practical and theoretical 
issues, among them assurance of data integrity, sufficiency of data to support the inferences made 
concerning models/hypotheses, deployment density, and what tools and hardware are required not just to 
take observations but enable a community of non-engineers to participate in and adapt a sequence of 
experiments as new observations are obtained. The resulting constraints for designing systems for such 
purposes are quite different from those commonly assumed in the infancy of wireless sensor network 
research, and even now in much ongoing systems research. We describe these constraints in light of 
experience in deploying sensor networks in support of scientific study at the Center for Embedded 
Networked Sensors (CENS). 
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I. INTRODUCTION 
The promise of sensor networks is that they will provide an ability to enable remote interactions with the 

physical world at unprecedented physical scales, with a broad set of sensors, and at low cost1. A great deal 
remains to be done in order for this vision to be realized. Much of the sensor network community is 
working on problems with some variant of the following constraints: nodes are to be low cost, and thus 
large in number but with severe limitations on some combination of energy, sensor complexity, 
computational ability, memory capacity or communications rate.  Dealing with severe constraints such as 
these is potentially tractable if the model of the physical phenomenon of interest is well-established, the 
purpose of the network is clear and the sensors themselves are reliable (trustworthy).  This can be true for 
example in surveillance applications where accelerometers are the primary sensor; whereas the sensitivity 
of the individual sensors may be highly variable due to variations in coupling to the medium, with high 
density they may still reliably detect intruders.  On the other hand, such variability would be extremely 
difficult to deal with in attempting to produce a scientific study of the vibrations due to pedestrians, absent 
some explicit calibration procedure and infrastructure. The pre-existence of a study or sequence of studies 
of exactly this sort is required for the surveillance application to be successful, or else the required node 
density cannot be computed. For reasons to be discussed, this investigatory phase is unlikely to be 
successful using highly constrained nodes. Moreover, there is implicitly some mobility mechanism to 
emplace the sensors, a means for locating them, and a model for sensor variability in the environment of 
interest.  In some applications, these are immediately available while in others they are the dominant 
barriers to success. 

 
Within the context of sensor networks as a means to draw useful inferences, there are many different 

optimizations that flow from (a) how broad a set of inferences is required (b) how well known is the 
physical model and (c) what kind of hardware is available and how well modeled it is.  For example, in 
many military/security applications the sensing/system model can be very well known and reliable, but the 
inference problem can still be very difficult (e.g, establishment of human intent). This may require a long 
train of experimentation before the appropriate type of network, including sensors and processing, can be 
selected. In an environmental study by contrast, there is usually massive uncertainty in models at all levels, 
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driving system architectures towards intensive processing and standard communications networking so that 
effort can be devoted to ensuring measurements are trustworthy and also to the sequence of experiments 
required to produce inferences among interconnected sets of models.  If the uncertainty is such that mobile 
elements are required (e.g., robots or graduate students), then their cost will often imply that higher end 
sensors, processors, and communications infrastructure may add only marginally to the total expense, in 
turn presenting new opportunities for exploration of heterogeneous systems.  

 
Three examples of constraint sets and a sampling of the research problems associated with them are: 
• Classic sensor networks: resource-starved nodes, with simple and potentially unreliable sensors, but 

which are well modeled; research problems include low-complexity security, efficient query/response, 
reliable multi-hop communications, consensus mechanisms for measurement reliability, cooperation 
for source/node localization, behavior in limits of single bit sensors and/or communication messages, 
robustness implications of flat networks, interplay of in-network processing with communications, 
dynamic re-tasking, low-footprint and robust databases 

• Hybrid ensembles: resources and sensors flow from application demands, resulting in heterogeneous 
networks that may include mobile elements and communications infrastructure, but where there is 
high model or application requirements uncertainty.  Problems include multi-scale sensing, data 
integrity, model creation and extension, fusion and inference from diverse sensing, adaptive sampling, 
security/privacy with unattended nodes, optimization with asymmetric resources/capabilities, serving 
multiple simultaneous users. 

• Actuated systems: Mobile nodes bring questions of control theory to the fore. In general having the 
network support some control task such as factory production, industrial process control or 
environmental remediation is a natural extension that will nonetheless put greater pressure on the 
network to respond both quickly and reliably to user requests.  In turn, more resources may go into 
infrastructure. Problems include new control abstractions to deal with the different time scales and 
reliability requirements for different functions of the network (e.g., tight for aircraft maneuvers, looser 
for the data the aircraft is gathering), reliable operation under intermittent communication, 
coordination of groups of sensors, actuators, processors and communication nodes including re-
tasking 

 
The greater the uncertainty concerning the phenomenon of interest, the greater the likelihood that no 

single experiment will suffice to answer the questions concerning how to model it.  Similarly, it becomes 
very difficult to assure the reliability of the inferences drawn from a deployed sensor security system. 
Rather, a system must be devised so that a sequence of experiments can be carried out, with interactions 
between the domain experts and the system, resulting in re-tasking of elements, insertion of new 
equipment, or even complete redeployments. The objective of some of these iterations may be to 
characterize the equipment.  For example, all biochemical sensors become fouled in the environment over 
time, and laboratory calibration will often be completely inadequate given the many confounding factors in 
natural environments.  Electronic faults will occur, and one might not be able to afford the most expensive 
and reliable measurement equipment (and its associated procedures) at the desired density.  This iterated 
procedure is described in section II. The data integrity problem consists of how to ensure reliable inferences 
can be made, even given that some elements are unreliable, and is the subject of section III.  Given the state 
of biochemical sensors, it is the dominant design constraint in long-term sensor network deployments for 
ecological studies or providing alerts to the presence of bio-chemical species. We briefly also describe tools 
being developed in support of reliable experimentation.  In section IV we address some issues specific to 
detection and localization problems, and in particular the value of cooperation among sensor nodes.  
Section V presents our conclusions. 

II. THE DESIGN CYCLE 
The main sensor network problem is the efficient computation of P(X|Z), where X is the desired 

inference, Z is the set of observations, and the probability distribution P results from some model and set of 
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observations.  For example, Z may consist of data from multiple sensors yielding range information and the 
desired inference X may be the estimated position of one or more sources to within some desired accuracy.  
The computation of P requires knowledge of the background noise, signal propagation model and some 
characteristics of the sources, as well as some minimum number of independent sensors. To some extent, a 
larger number of sensors will assist in reducing the location uncertainty, but this will not overcome 
fundamental ignorance of the propagation conditions.  In a more complicated version of the P(X|Z) 
problem, the observations may be indirect in that they are themselves the product of a model, and the 
desired inference X may be a determination of which among several hypothesized physical models is most 
likely.  It may be noted that sensor measurements are in fact always the result of some processing that 
employs a model of how the transducer operates.  This model is usually limited to some particular range of 
physical conditions.  But beyond this, the phenomenon of interest may not be directly observable with the 
available sensors, and so some phenomenon that is associated via some model is monitored instead.  Thus 
for example in assessing whether to initiate the harvest, the color of a grape might be estimated using a 
digital camera and appropriate signal processing, given the impossibility of directly measuring sugar 
content at a distance. A set of experiments relating color and sugar content for the variety of interest would 
be required.  One could then turn to the primary goal of examining alternative hypotheses on how to better 
grow grapes (or grow better grapes). 

 
The combination of data and the models used in making inferences must meet reliability requirements.  

Noise, sensor faults, software and communication failures, miscalibration and drift will all contribute to 
unreliable or dropped data.  With models of the fault mechanisms and the physical phenomena under study 
a network can be planned to detect and mitigate sources of unreliability and to make reliable inferences in 
the presence of bad data.  Mitigation and detection means include sensors with independent fault 
mechanisms (e.g., sensors of different types), use of more expensive but trusted sensors/experimental 
procedures to audit lower cost but less reliable subsystems, and redundancy of observations with respect to 
the minimum required by the physical model.  At one extreme, with a fully reliable model there is no need 
for observations, while at the other with a great deal of reliable data there is no need for an a priori model.  
In general there will be a design iteration as the level of trust in models of the physical phenomenon of 
interest and the subsystem used for studying it are improved. 

 
Many sources of trust can be invoked in sensor networks. Often, the physical processes that are the 

objects of scientific observation will be either stochastic or so poorly understood that they must be modeled 
as such.  Clearly, the more predictive the model the more the process itself can be used to test the system 
that is observing it.  For example, spatio-temporal smoothness assumptions allow for over-sampling and 
thus permit checking measurements against each other for inconsistency.  If however little is known about 
the process then some combination of a greater degree of reliability in the observing system and 
deployment density is required. Thus, knowledge of the process assists both with planning what density of 
nodes is required assuming all are reliable and also what increase in density is needed given a model of 
their unreliability.  With a poor model of the reliability of the nodes, an even larger penalty must be paid in 
deployment density.  This is usually judged unacceptable, and consequently controlled experiments with 
trusted nodes are typically conducted to characterize processes, while others are conducted with controlled 
conditions to develop a model of the reliability of the nodes.  Clearly trusted instruments (in general, 
external audits) are required for both processes.  In this way, uncertainty margins are reduced.  
Bootstrapping without some trusted experiments is futile: without external validation, it is impossible to 
know whether observations support the desired inference. 

 
Consider further the role of uncertainty in the sensing/control system design cycle, depicted in Figure 1.  

Based on some set of hypotheses or control requirements arising from a physical model or set of models, a 
class of desired outcomes is formulated.  An experimental system is then designed to produce these 
outcomes (e.g., select the most likely hypothesis).  How tightly the system can be designed depends both on 
the breadth of the requirement set and the uncertainties in the model of the physical processed to be 
studied/controlled, as well as the uncertainty in the behavior of the system itself.  Ambiguity in 
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requirements and models in general results in redundancy in design.  Thus in practice multiple design 
iterations are performed to progressively reduce uncertainty in the system and physical models. This allows 
later designs to be deployed on larger scales at considerably reduced cost.  This process implicitly includes 
humans in the loop, supplying intuition based on past experience, and judgment on how design goals 
should be modified based upon evolving experience.  Consequently, human interfaces should be integral to 
the design, rather than afterthoughts.  Tools are required at all steps to help interpret data and assist the 
decision process on design modifications and formulation of the next experiment. 

Class of desired
outcomes

Physical model

System design System model

Data analysis Uncertainty
reduction

 
Figure 1: The Design and Deployment Cycle 
 
Consider in particular a situation in which there is some trusted procedure including a combination of 

models, physical apparatus and operational protocols for observing a physical system at a particular spatio-
temporal scale.  To be able to draw reliable inferences from observations at broader scales at reasonable 
cost, new models and system components must build outwards from the trusted system.  This trusted 
system may be used for example in intensive early validation tests of the new components or periodically to 
audit the system performance.  This is the basic engine of the expansion of scientific knowledge and the 
production of complex systems.  The overriding practical consideration is of course how to make the 
validation less painful, given that the creation of functioning complex systems tends to be one part design 
and one thousand parts debugging, the latter being impossible if there are too many unmodeled 
confounding factors.  Thus, we re-use that which has already been debugged (hardware, software and 
models), innovating the least required for each step in the design iteration. 

III. PRODUCING TRUSTWORTHY INFERENCES 
In this section, we describe several research efforts aimed at ensuring experiments produce trustworthy 

results, even given unreliable components.  A highly motivating experience was an experiment in 
Bangladesh in which the objective was to study the mechanism whereby arsenic is mobilized to 
contaminate rice paddies2. A sensor network was deployed, and it was not realized until considerably later 
when the data were analyzed that a large fraction of the sensors at one point malfunctioned or were 
miscalibrated.  (Here the equipment performing the calibration is the trusted system, and the domain 
scientists involved had definite hypotheses that were to be tested). While useful results were obtained, the 
quality of the scientific data could have been considerably improved if there were automated detection 
mechanisms or even a means for researchers in the field to have the necessary tools to analyze results in 
progress, and thus be able to take remedial action.  Given the large logistical cost in this and many other 
deployments, research into such questions subsequently became a high priority at CENS.  Here we describe 
some research into data integrity and tools to assist scientists and other users in the field. 

 
Detection of faults and design for resilience to faults while gathering the required data have a common 

theoretical basis.  The major components are: (a) a model of the phenomenon of interest (b) a model of the 
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detection system operation under normal conditions (c) a list of the known faults, with corresponding 
models for behavior under each of them and (d) a trusted mechanism for detection of known and unknown 
faults and/or restoration of normal conditions. There will always be some uncertainty regarding the 
parameters of the various models, including prior probabilities, moments of the distributions, etc.  The 
problem is to design a detection system that is robust to the uncertainties while being parsimonious in 
resource usage.  These are conflicting goals, resolvable to some extent through the use of mechanisms that 
reduce the uncertainties, and thus the redundancy required. Put another way, for the data to be trusted, a 
high degree of trust is required in some composition of the process model, fault model, and auditing 
system, with in some sense a surplus of trust in one domain fungible to make up for uncertainties in the 
others.   

 
When there are no faults, one can use correlated measurements to assist in calibration3. Explicit 

investigation of fault and calibration models can improve the reliability and generality of these techniques.  
A simple linear model4 can characterize common faults and calibration errors such as offsets, gain, stuck-at 
faults and degradation in sensor sensitivity.  Remarkably, if sensors are calibrated up to an unknown gain 
and offset, then if a phenomenon is even slightly oversampled, the solution of a system of linear equations 
suffices to provide calibration5.  That is, neither a very dense network nor extensive ground truth or 
modeling is required. The principle of operation is to perform an orthogonal projection from the space of 
measurements to a subspace in which the correctly calibrated sensor readings must lie. 

 
When sensors are redundantly deployed with respect to the variations of the phenomenon of interest, 

they may to some extent verify each other’s operation.  This can be approached as a data fusion problem6-

10. It is also possible to correct faulty data using models11-14.  In the following, we concentrate on consensus 
problems15 in which sensors are judged based upon the extent they agree with a model derived from the 
majority of the sensors.  A Bayesian framework is particularly useful in this situation since it is possible to 
make use of all information available, make approximations when it is not, and refine the models as more 
information is gathered. 

 
Without ground truth, certain assumptions must be made about the model of the phenomenon in order to 

proceed.  Implicitly, this requires some physical model of the phenomenon based upon past trusted 
observations. For example, if the phenomenon is modeled to be smoothly varying over the set of K sensors, 
then variations in both data trends (first derivative) and offsets may be used to distinguish faulty sensors.  
In our first approach to this problem16 we find the K/2 sensors that agree most strongly, and use this set to 
create the model of “normal” operation.  Since the process evolves over time, the agreeing set is updated, 
with smoothing to limit jumps in membership.  The maximum a posteriori (MAP) criterion17 is used to 
determine membership, with prior probabilities of a sensor being faulty updated in each step. Some details 
to consider are the noise model, accounting for differences in measurement times of the different sensors, 
sampling window duration for smoothing, and the thresholds to set for determining unacceptable data 
offsets.  These all require some knowledge of the physical process of interest.  Having then determined 
which sensors belong to the agreeing subset, the next step is to estimate which of the remaining sensors are 
faulty. A Bayesian approach may again be used, comparing sensor behavior against a model (linear in our 
case) derived from the sensors in the agreeing subset, by computing a likelihood moving average.  In the 
end, a Neyman-Pearson test17 can be performed under the assumption that this likelihood is Gaussian, so 
that either fault detection or false alarm rate is met.  In some experiments with correlated temperature data 
in a cold air drainage experiment18 in which one of four sensors was faulty, use of data trends alone resulted 
in the faulty sensor being correctly detected in 82% of the windows, while with offsets taken into account 
the detection probability rose to 99%, at the expense of an increased false alarm rate. 

 
Given these encouraging results, many refinements and improvements are possible.  A number of 

parameters must be set in the above procedure; these rely upon human judgments on what actually is the 
underlying physical model.  Better knowledge of that model (e.g., from ground truth resulting from more 
reliable instruments, accumulating knowledge over multiple experiments, etc.) can yield improved 
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performance.  Additionally, the binary division of sensors into faulty or non-faulty is an artifact of having 
weak assumptions concerning the physical model.  What would be more useful is an estimate of the 
likelihood of a sensor being faulty, given the data and the model, with such estimates being updated as 
confidence in a model improves. 

 
Faults can also occur at a network level.  The Sympathy tool19 operates by comparing the quantity of 

data collected at a sink against schedules or expected levels, and then based on past behavior determines 
likely causes, such as crashes, reboots, lack of connectivity, poor paths through the network, etc., so that 
faults may be localized. This tool has been used with success in a wide set of sensor deployments, but it has 
limitations such as the need for expert knowledge of the faults so that a static decision tree can be 
composed, and the resulting false classifications that occur when conditions are different from what was 
assumed in building the model. In the Confidence tool the goal was to be more robust to modeling errors 
and also to deal with data faults. Since ground truth is generally not available at the desired level of detail, 
an unsupervised learning technique is required. Here, k-means clustering is used to learn the feature space 
in which faults appear as anomalies.  The method results in a much lower rate of misdiagnosis of faults, 
speeding up identification of network faults a factor of three compared to Sympathy. 

 
Given the capability of detecting faults and calibration errors, the obvious next step is to remediate the 

situation through some combination of adjustment of the data analysis, repair/recalibration of sensors, and 
redeployment of the network. Additionally, having gathered some data, it may be apparent that the sensor 
node density is insufficient to answer the question of interest, or new questions occur to the end-users. In 
all of these cases, it is essential therefore that the network be easily re-tasked (both physically and with new 
software), and that human interactions are simplified since decisions of these types are well beyond what 
machines can reliably deal with in complicated settings (e.g., in the natural world).  A number of rapidly 
deployable and re-taskable networks exist2, enabling the iterated experimentation described in section II.  
This ability to adapt, using human experience and intuition together with re-taskable hardware is an 
important means of dealing with uncertainty in models of the equipment and the phenomena of interest 
alike. 

 
To take advantage of these opportunities for redeployment, there has been considerable research into 

optimal placement of sensors.  Classically, given a model and an objective function one performs an 
optimization that determines the sensor layout.  When the model is uncertain an incremental deployment 
becomes necessary20.  In general, what is needed is a technique that is robust to modeling errors.  For 
example, we may begin with the hypothesis that the true model lies within some set, and then incrementally 
deploy sensors to sharpen the differences between these models, allowing an early decision on which is 
most likely (or indeed, if there will sufficient confidence in any). This problem aligns quite closely with the 
practice of experiment design in which there are usually a number of good hypotheses provided by the 
expert end-users, and is far more tractable than the problem of both designing the experiment and 
determining the model with unsupervised learning and few priors. 

IV. COOPERATION VERSUS DEPLOYMENT DENSITY 
Now suppose physical models are well-known and the sensors are reliable. Some natural questions 

which then arise in planning a deployment are what density of nodes is required for reliable inferences, and 
how many nodes should cooperate in producing such inferences (e.g., for the detection and localization of a 
source).  A variation on these questions is whether it is better to deploy a few high-performance nodes (e.g., 
with adaptive beamforming capabilities) or a large number of small nodes (e.g., with only proximity 
detection). The answer to the latter question depends in large measure on the resource costs assigned to the 
different classes of nodes, but it is quite possible to compute the relative numbers and the extent to which 
cooperation among the nodes in making a given inference is helpful. 

 
 Consider a scenario whereby nodes are deployed to detect the presence of a source with known 
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characteristics, with the only impairments being simple distance loss (e.g., second or fourth power loss with 
distance) and additive noise.  In such situations, given high precision the optimal fusion rule is maximal 
ratio combining21.  Essentially, the final decision is a weighted and coherent sum of the readings from the 
participating sensors, with the weighting proportional to the SNRs of the individual readings.  The result is 
a composite SNR that is strictly better than that of the best (closest) sensor.  In practice of course when 
there is the possibility of multiple confounding sources and other impairments we should not include within 
the cooperating set of sensors those with low SNR.  Inclusion also implies a resource cost, and so it is in 
general better to stop when the fused SNR is above some desired threshold, or in general, when the 
inference meets the quality of service requirements. Thus, the question is the balance between the marginal 
utility of including the readings of additional sensors in the fused decision, against the cost of doing so. 

 
These types of questions have been investigated for the scenario of localization of sources22.  The utility 

of a fused decision was taken to be the inverse of the location ambiguity. With range-only information, the 
utility of having additional sensors rises quickly until the point that the ambiguities in the solution 
disappear (e.g., 3 sensors in a plane, or four in 3-space).  Afterwards, the marginal utility of including 
additional sensors quickly declines due to two factors: a) the diminished marginal contribution of the nth 
sensors as compared to the first few, as by then many sensors have contributed to the utility and b) the 
decline of SNR with distance, so that the best sensors (i.e., the close ones) dominate the utility.  Thus, even 
though utility might not be bounded, its increase in the number of sensors is at best logarithmic, resulting in 
extremely high marginal cost versus the utility obtained.  Thus, relatively small numbers of sensors beyond 
the minimum needed for computing location (e.g., on the order of 5-7) suffice for giving most of the utility.  
Put another way, very large increases in the number of cooperating sensors are required for overcoming an 
insufficient density of deployment, and thus a density that is high enough for relatively few needing to 
cooperate on a given decision is a good design choice.  The transition from low to high utility occurs quite 
sharply, so that many reasonable sensor selection algorithms yield similar results. These conclusions are 
not much altered with more challenging propagation conditions such as multipath fading.  In this case, the 
number of sensors required is increased in the usual fashion for providing diversity against fading, and 
thereafter the utility saturates.   

 
Thus, when high-precision measurements are available, the cooperating group should be relatively small.  

This does not mean that the total number of sensors in the network itself must be small; to cover a large 
region, many will be required.  High-quality decisions on specific events within the network could however 
be made through the cooperation of relatively few sensors in the vicinity of each event, and we argue that 
the network should be designed with this objective in mind.  A higher density than the minimum required 
for reliable decisions results in needless expense, and a lesser density results in exponentially increased 
communications.  The sharpness of the transition from insufficient quality of inference to saturation of 
utility indicates the value of the knowing the models: one can then design deployment densities for the 
sweet spot.  With uncertainty, or temporal-spatial variability, a safety margin in deployment density will be 
required, escalating costs. 

 
A related question we are now investigating is whether there is a similar saturation phenomenon at work 

in the number of bits of precision in the measurements of the individual sensors.  While classically this 
question is posed in terms of the communication or signal processing resources available to nodes, a more 
practical motivation is that sensors have will often have limited accuracy, with large expense in calibrating 
to many bits of precision.  Additionally, the relevant variations in the phenomenon of interest may be in the 
last few bits of the measurement dynamic range.  The solution of problems of this type requires a joint 
optimization of the quantization levels and the weights assigned to these levels.  In the simplest case of 1-
bit decisions (e.g., for proximity detection), the weights are trivially 1 or 0, but the threshold in SNR for 
inclusion of a sensor in the fusion decision requires an optimization.  As in the high precision case, there 
will be further tradeoffs involving the deployment density that will depend on the propagation model and 
the required quality of the fused decisions.  Matters of course become much more deeply complicated with 
uncertainty in the models and with unreliable nodes. 
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V. CONCLUSION 
The certainty available concerning the phenomena to be sensed and the network performing the sensing 

has a central role in determining the experimental approach.  Networks of relatively simple nodes can be 
successful if everything is well-characterized (i.e., apparatus, phenomenon of interest, and goals). However, 
matters are seldom so clear in deployments outside laboratories, and even more so in scientific 
experiments, where the experiment is undertaken precisely because the phenomenon is only partly known, 
and the sensors are often subject to many environmental degradations.  This motivates research into how to 
assure that the data can reliably support the inferences to be drawn, and leads to the notion of sensor 
networks and associated tools that can support iterated experimentation with humans in the loop to guide 
the sequence as data is collected and analyzed. Indeed, in most applications it is advantageous to plan for 
the inevitable interaction between the designed system and the human operators with their analytical 
abilities and evolving goals. It is not so much a matter of designing the best system for the problem at hand 
as designing it to be able to evolve with increased experience and changed priorities. A broad range of very 
interesting research questions arise, greatly expanding the universe of sensor network problems. 
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