This work describes the design and implementation of a resonator structure for the fabrication of an electromagnetic inertial microgenerator for energy scavenging from ambient vibrations. This structure is based in the use of a permanent magnet (inertial mass) mounted onto a polymeric membrane. ANSYS simulations are carried out to investigate the influence of the membrane geometry on the resonant frequency. Moreover, generator prototypes have been fabricated with a modular manufacturing process in which the electromagnetic converter and the mechanical resonator are manufactured separately, diced and then assembled. In these prototypes, the influence of the resonator geometry (membrane dimensions) on the generator behaviour has been investigated. The experimental results show the ability of these devices to generate power levels in the range of μW's and output voltages in the range of hundreds of mV. The parasitic damping of the resonator structures is estimated from the fitting of the experimental data, and suggests the existence of an intrinsic limitation of the polymers related to spring stiffening effects at large excitation amplitudes.
The detailed microstructural characterization of CuInS2 (CIS) polycrystalline films is performed by combined in depth MicroRaman scattering/Auger Electron Spectroscopy measurements as a function of the chemical composition and temperature of processing. This has allowed to identify the main secondary phases in the layers as CuIn5S8 for Cu-poor samples and CuS for Cu-rich ones. The presence of such phases is strongly related to the temperature of processing, being secondary phase formation inhibited when the growing temperature decreases from 520°C to 370°C. This is also accompanied by a significant degradation of the structural CIS features, as reflected by the increase in both shift and broadening of the A1 CIS mode in the spectra, and by the decrease of the grain size estimated by cross-section TEM. Besides, Raman spectra measured from samples grown at lower temperatures are characterized by the presence of an additional mode at about 305 cm-1. The presence of this mode in the spectra from Cu-rich samples gives experimental support to its previously proposed structural origin. Finally, MoS2 secondary phase has also been identified at the CIS/Mo interface region, being its occurrence also inhibited at low growing temperatures.
Our researches were devoted to the micromechanical elements fabricated by the surface micromachining technology, in order to reduce or to eliminate the internal stress or the stress gradients. We used an analysis based on secondary ion mass spectroscopy and the spreading resistance profiling determinations, correlated with cross-section electron transmission spectroscopy. The stress induced in the polysilicon layers by the technological processes depends on: (i) the conditions of the low pressure chemical vapor deposition process; (ii) the phosphorus doping technique; (iii) the subsequent multi-step annealing processes. In our experiments the LP-CVD conditions were maintained the same, but the condition specified previously as items (ii) was varied by using two different doping techniques: thermal- chemical doping consisting in prediffusion from a POCl3 source in an open furnace tube; ionic implantation with an energy E equals 65KeV and a dose N equals 4.5 X 1015 cm-2. The implantation process was followed by an annealing at 900 degrees C in an oxygen ambient for 30 minutes. The thermal budget was varied after the doping in order to reduce the stress gradient in the polysilicon layers. The results of our analysis allow us to show that: (1) the doping gradients are correlated with the slower phosphorus grains forme by an excess of the oxygen atoms; a concurrent process induced by the silicon self-interstitial injection during the diffusion and oxidation, determines the enhancement of the grain growth and therefore the enhancement of the electrical activation especially near the internal polysilicon interface; (2) the post-doping annealing conditions could be varied in a convenient manner, so that the doping induced stress gradients into the polysilicon layers to be reduced or completely eliminated for suitable micromechanical induced stress gradients into the polysilicon layers to be reduced or completely eliminated for suitable micromechanical applications. The results were used for the process optimization of micromechanical elements. The internal stress was determined by using anew, pull-in voltage method, allowing the comparison of the theory with the experimental data. It was deduced a new form of the equations set useful to extract the mechanical parameters like the internal stress and the Young's module. It was also deduced a simplified approximate formula useful to apply the least square fitting method for the extraction of the mechanical parameters. The results confirms the conclusions of the doping and the structural analysis.
Si and epitaxial SiGe strained and relaxed layers have been implanted with C+ ions to investigate the formation of SiCy and SiGexCy alloys (medium doses) as well as the ion beam synthesis of SiC in SiGe matrices (high doses). These layers have been analyzed by Raman scattering, in correlation with XRD, XPS and TEM. These data show that for implant temperature of 500 degree(s)C (crystalline target), carbon is not incorporated in substitutional sites, and (beta) -SiC precipitates aligned with the implanted matrix are formed. The residual strain and the degree of missorientation of these precipitates depend on the strain, defects and bond length of the implanted matrix. Moreover, precipitation of (beta) -SiC in the implanted region causes an enhanced Ge migration, mainly towards the surface. This determines a Ge enrichment and consequent relaxation of the Si1-xGex matrix. This contrasts with the room temperature implants performed in preamorphized Si layers, where carbon incorporation in substitutional sites (Cs) takes place after thermal annealing. The maximum amount of Cs is found for the implanted dose corresponding to a peak carbon concentration of 1.3%. For higher doses, there is a degradation of the crystal quality of the recrystallized layer.
Comparative study of nitrogen implanted a-C:H film has been carried out by micro-Raman and nanoindentation techniques. At high dose nitrogen implantation (1(DOT)1017 cm-2) the structural inhomogeneities are observed in the implanted region. After implantation a significant broadening and energy shift of both G- and D-bands in Raman spectra are observed. On the other hand, film hardness measurements reveal the existence of more dramatic differences between both implanted regions with homogeneous and structural inhomogeneities. The film hardness in the inhomogeneous region more than by 5 times exceed the one in the homogeneous region. The hardness improvement of ion implanted a-C:H film is related to film disordering and ion beam induced phase-structure transformation in the implanted region.
The Raman scattering analysis of damaged and amorphous SiC layers obtained by ion beam processing has been performed as a function of the processing parameters. Two different sets of samples are investigated: (a) 6H-SiC samples implanted with Ge+ ions at different doses, and (b) SiC layers obtained by C+ ion implantation into amorphous Si. In the first case, damage accumulation and amorphization are analyzed as a function of the implanted dose. In the second case, deep in the analysis of the dependence of recrystallization processes on the amorphous structure, the ion beam induced epitaxial crystallization (IBIEC) of amorphous layers obtained by carbon implantation is also studied. The results show the strong ability of Raman scattering for the identification of amorphous phases in the layers, as well as for the evaluation of residual damage after thermal or IBIEC processes. Correlation of these data with IR, RBS and TEM allows us to determine the structural evolution of the samples under thermal or irradiation processes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.