We introduce a technique capable to produce and control stabilized single-frequency emission with a sub-kHz linewidth and independently soliton comb generation from a multi–frequency regular Fabry-Perot laser diode selfinjection locked to a high-Q optical microresonator. We also observed novel regimes of controllable single, dual, and multiple-frequency generation that may be useful for the creation of narrow-linewidth lasers required for the spectroscopy, LIDARs, and telecommunications. For analysis of the considered effects original theoretical models taking into account self-injection locking effect, mode competition and Bogatov asymmetric mode interaction were developed and numerical modeling was performed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.