A block copolymer-directed self-assembly was combined with nanoimprint lithography to generate templates with rectangular patterns through an original double imprint process. A rotary e-beam tool was used to separately expose circumferential and radial line/space chemical contrast patterns with periodicities commensurate to the natural period of two lamellae-forming poly(styrene-b-methyl methacrylate) (PS-b-PMMA) block copolymers. Line patterns are formed by directed self-assembly of PS-b-PMMA on chemical patterns on two separate submaster templates, one with circumferential lines to define concentric tracks, and a second template on which the block copolymer is used to form radial lines at constant angular pitch. The patterns are subsequently transferred to their underlying Si substrates to form submaster templates. Using two sequential nanoimprinting steps, the radial and circumferential submaster line patterns were combined into a final quartz master template with rectangular bits on circular tracks.
We combine block copolymer directed self-assembly with nanoimprint lithography to generate templates with rectangular patterns through an original double imprint process. We use a rotary e-beam tool to separately expose circumferential and radial line/space chemical contrast patterns with periodicities commensurate to the natural period of two lamellae-forming poly(styrene-b-methyl methacrylate) (PS-b-PMMA) block copolymers. Line patterns are formed by
directed self-assembly of PS-b-PMMA on chemical patterns on two separate submaster templates, one with circumferential lines to define concentric tracks, and a second template on which the block
copolymer is used to form radial lines at constant angular pitch. The patterns are subsequently transferred to their underlying Si substrates to form submaster templates. Using two sequential
nanoimprinting steps, we combine the radial and circumferential submaster line patterns into a final quartz master template with rectangular bits on circular tracks.
We show that integrated optical star couplers can be useful characterization devices to measure the sidewall roughness-induced
scattering losses of planar waveguides. We describe the detailed fabrication processes of these star couplers on
the silicon-on-insulator (SOI) platform and the process improvements implemented to reduce the waveguide sidewall
roughness and scattering loss. We report the main process challenges, particularly to assure a clear gap between any
adjacent waveguides of the dense and closely spaced output waveguide array. These challenges are addressed by
optimizing the exposure dose of the resist and adding an oxygen ashing treatment to eliminate waveguide footings. We
demonstrate further improvement on the waveguide profile and sidewall roughness through the use of a thin Cr
hardmask for the dry plasma etching. This optimized fabrication process is capable of producing approximately a 3 nm
root-mean-square sidewall roughness, measured using both scanning electron microscopy (SEM) and atomic force
microscopy (AFM). Using the fabricated star couplers, we manage to measure the relative scattering losses of various
waveguides with the width varying from 0.2 to 2.0 μm in a single measurement, and show that the measured losses agree
with the measured sidewall roughness.
Fine pitch gratings (200 nm - 240 nm) are required for a variety of devices such as optical filters, semiconductor lasers
and sensors for bio-medical applications. Various lithographic techniques are commercially available for fabricating
gratings, with the choice depending on the type of grating required, cost and volume of manufacture. It is possible to use
state of the art high-resolution projection steppers, common to silicon device manufacturing, for half pitch gratings down
to 65 nm, but for much smaller volume manufacturing of photonic devices these tools have a prohibitive cost of ownership.
Thus, remaining techniques for sub 120 nm half pitch gratings are holography, electron beam lithography, and
nano-imprint lithography. In this paper we compare, characterize, and discuss the practical application of these three
methods. Examples of gratings fabricated at the Canadian Photonics Fabrication Centre (CPFC) are shown as well as
some application examples.
A monolithically integrated asymmetric graded index (GRIN) waveguide structure for coupling light into high index contrast waveguides is described. When analyzed in terms of its waveguide modes, the GRIN coupler is shown to be a multimode interference (MMI) device. The design parameters and tolerances are calculated for quadratic index profile and uniform index amorphous silicon (a-Si) GRIN couplers optimized for coupling light into silicon-on-insulator waveguides. Calculations of coupling efficiencies into 0.5 μm SOI waveguides show that asymmetric GRIN couplers operate over a very wide wavelength range with low polarization dependence, and fabrication requires lithographic resolution of only ±1 μm. Experimental results are presented for a 3 μm thick single layer a-Si coupler integrated with a 0.8 μm SOI waveguide. The measured variation of coupling efficiency with coupler length is in agreement with theory, with an optimal coupling length of 15 μm.
We review the use of the oxide cladding stress induced photoelastic effect to eliminate the modal birefringence in silicon-on-insulator (SOI) ridge waveguide components, and highlight characteristics particular to high index contrast (HIC) systems. The birefringence in planar waveguides has its origin in the electromagnetic boundary conditions at the waveguide boundaries, and can be further modified by the presence of stress in the materials. It is shown that geometrical constraints imposed by different design and fabrication considerations become increasingly difficult to satisfy with decreasing core sizes. On the other hand, with typical stress levels of -100 MPa to -400 MPa (compressive) in SiO2 used as the upper cladding, the effective indices are altered up to the order of 10-3 for ridges with heights ranging from 1 μm to 5 μm. We demonstrate that the stress can be effectively used to balance the geometrical birefringence. Birefringence-free operation is achieved for waveguides with otherwise large birefringence by using properly chosen thickness and stress of the upper cladding layer. This allows the waveguide cross-section profiles to be optimized for design criteria other than zero-birefringence. Since the index changes induced by the stress are orders of magnitude smaller than the waveguide core/cladding index contrast, changes in the mode profiles are insignificant and the associated mode mismatch loss is negligible. We study the stress-induced effects in two parallel waveguides of varying spacing, to emulate the condition in directional couplers and ring-resonators. In the arrayed waveguide grating (AWG) demultiplexers fabricated in the SOI platform, we demonstrated the reduction of the birefringence from 1.3x10-3 (without the upper cladding) to below 1x10-4 across the spectral band by using a 0.6 μm oxide upper cladding with a stress of -320 MPa (compressive). Design options for relaxed dimensional tolerance and improved coupler performance made available by using stress engineering are discussed.
We present recent advances in the development of a waveguide microspectrometer chip with high spectral resolution in the near-infrared part of the spectrum. The microspectrometer is designed for a high index contrast silicon-on-insulator (SOI) platform, where high number of spectral channels can be obtained with high spectral resolution in a compact device. We present a 100-channel SOI microspectrometer with designed spectral resolution of ~0.08 nm at 1.5 μm wavelength and about 8x8 mm2 in size. A number of critical design issues are discussed, including design of deep-etched tapers near the Rowland circle required for high-resolution performance as well as coupling between closely spaced waveguides. Device fabrication process is discussed in detail, including two-step e-beam patterning and two-level ICP etches, the focus being on achieving deep and smooth vertical etches in silicon with controllable sub-micron waveguide widths and gaps. The potentially available spectral range of the microspectrometer is limited by the transparency of silicon, extending from the band edge of Si at 1.107 μm to the onset of lattice phonon absorption band near 5 μm. Such compact high-resolution multi-channel integrated microspectrometers are promising for a variety of applications, including spectroscopy, telecommunications, optical interconnects, environmental and bio-sensing.
Coupling light into and out of small high index contrast waveguides is a fundamental challenge to implementing practical microphotonic waveguide and photonic crystal devices. Previous approaches include three-dimensional tapers, inverse taper waveguides, and grating based couplers. We propose and describe a much simpler coupler based on a short length of graded index (GRIN) material deposited on top of a silicon-on-insulator (SOI) microphotonic waveguide. The GRIN coupler has a refractive index that decreases from the index of silicon at the waveguide-coupler interface, to an optimized value at the coupler surface. Beam propagation method calculations are used to evaluate the coupling efficiency from a 4 μm thick coupler section to the fundamental mode of a 0.5 μm thick SOI waveguide. Coupling efficiencies are compared for couplers with smoothly varying quadratic index profiles and with one, two and three index steps. Coupling efficiencies of 75% (1.3 dB) or better are predicted using a three step GRIN structure with indices ranging from n=3.30 to 3.41 (Si). This index range is easily accessed using a-Si layers deposited by PECVD at varying deposition conditions, or by using composite digital alloys of high and low index films. With this method, microphotonic waveguide couplers can be designed and fabricated using only PECVD deposition and one patterning etch step with very modest tolerances. Efficiency increases to 87% (0.6 dB) when the index range of the 3-step coupler is extended to 3.0.
Imaging devices working in the near infrared (NIR), especially in the so-called eye-safe range, i.e., around 1.5 mm, have become increasingly important in many military and commercial applications; these include night vision, covert surveillance, range finding and semiconductor wafer inspection. We proposed a new approach in which a wafer-fused optical up-converter, combined with a commercially available charged coupled device (CCD), functions as an infrared camera. The optical up-converter converts incoming infrared light into shorter wavelength radiation that can be efficiently detected by the silicon CCD (cutoff wavelength about 1 mm). An optical up-converter with high efficiency at room-temperature is critical for low cost and large-area infrared imaging applications. A prototype 1.5 mm optical up-converter based on wafer fusion technology has been successfully fabricated. The device consists of an InGaAs/InP pin photodetector and a GaAs/AlGaAs light emitting diode. Experimental results show that the end-to-end up-conversion efficiency is 0.0177 W/W at room-temperature, corresponding to an internal quantum up-conversion efficiency of 76%. In this paper, the design, fabrications and characterization of the optical up-conversion devices is presented. Issues related to device optimization, such as improving internal and external up-conversion efficiency, are addressed. Preliminary results demonstrate the room-temperature up-conversion imaging operation of a pixelated wafer-fused device.
Although the process of deep x-ray lithography with PMMA achieves good resolution, it requires significant exposure times because of the low sensitivity of PMMA to x-rays. Therefore resist materials, which can achieve high resolution, but which are inherently more sensitive than PMMA, are desirable. Here it is shown, that x-ray exposures of the SU-8 resist can achieve high resolution with substantially reduced exposure times. Irradiation at the synchrotron source of DCI at Lure (Paris) and MAXLAB (Lund, Sweden) demonstrated a reduced exposure time for a 600 micrometers thick SU-8 relative to PMMA. The does needed to obtain standing structures was 30 J/Cm3 for DCI and 52 J/CM3 for MAXLAB. A 600 micrometers thick PMMA resist requires a typical bottom does of 4 kJ/cm3, so Su-8 is considerably more sensitive to x-rays than PMMA. Preliminary critical dimension measurements (CD) of the 600 micrometers SU-8 resist structures have been obtained for the entire height of the structure, which was exposed at DCI. The CD measurements were made in a Scanning Electron Microscope (SEM) using 10 micrometers wide structures, which have a 20micrometers pitch, this being used to calibrate the measurements. These measurements show that the gain in the critical dimension per structure edge is dependent on the bottom dose. Doses of 30 J/cm3 achieved a CD gain per edge of +0.5 micrometers , while doses of 40 J/cm3 Yielded a CD gain per edge of 0.9 micrometers . However, the gain in the CD per edge is critically dependent on the solvent content in the resist. Doses of 40 J/cm3 into a resist with a 2% residual solvent content yielded CD gains per edge of 0.3micrometers . In addition, the dose profile in the resist does not change the CD values significantly. It has been shown that the resolution of the x-ray exposed SU-8 structures compare quite favorable with PMMA, but the exposure time for SU-8 is approximately 100 times less than that for PMMA. This significantly improves throughput for deep x-ray lithography processes.
The requirements for better control, linearity, and uniformity of critical dimension (CD) on photomasks in fabrication of 180 and 150 nm generation devices result in increasing demand for thinner, more etching durable, and more sensitive e-beam resists. Novolac based resists with chemical amplification have been a choice for their sensitivity and stability during etching. However, difficult CD control due to the acid catalyzer diffusion and quite narrow post exposure bake (PEB) process window are some of the major drawbacks of these resists. SU-8 is recently introduced to the market negative photoresist. High sensitivity, fairly good adhesion properties, and relatively simple processing of SU-8 make it a good substitution for novolac based chemically amplified negative e-beam resists in optical mask manufacturing. The replacement of traditional chemically amplified resists by SU- 8 can increase the process latitude and reduce resist costs. Among the obvious drawbacks of SU-8 are the use of solvent- based developer and demand of oxygen plasma for resist removal. In this paper the use of SU-8 for optical mask manufacturing is reported. All steps of resist film preparation, exposure and development are paid a share of attention. Possibilities to use reactive ion etching (RIE) with oxygen in order to increase resist mask contrast are discussed. Special exposure strategy (pattern outlining) was employed to further improve the edge definition. The resist PEB temperature and time were studied to estimate their weight in overall CD control performance. Specially designed test patterns with 0.25 micrometer design rule could be firmly transferred into a chromium layer both by wet etching and ion milling. Influence of exposure dose variation on the pattern CD change was studied.
KEYWORDS: Electron beam lithography, Control systems, Polymethylmethacrylate, Electrons, Imaging systems, Metals, Photoresist materials, Photoresist developing, Physics, Process control
Lift-off process is proved to be one of the simplest and most reliable technique for fabrication of microstructures [1], including those with submicrometer sizes [2]. The control of resist image profiles becomes of increasing importance if desired image size is decreased. The easiest way to control the profile is to involve multilayer resist systems with a bottom planarizing layer more soluble by the developer than a top image recording layer.
In trilayer systems intermediate layer usually of inorganic matter serves as a separator preventing the two resist layers mixing. The intermediate layer's drawback is necessity of its removal in openings before the development of the bottom layer.
Bilayered resist system for submicrometer E-beam lithography based on PMMA as the top imaging layer and P(MMA-MAA)-copolymer as planarizing underlayer has been recently reported by Kuzmin et al [3]. Earlier Dolan [4] proposed offset mask technique for lift-off photoprocessing in order to obtain metal lines as narrow as 0.25 pm. To get appropriate amount of undercut in his trilayer system Dolan applied blanket exposure of the bottom layer of photoresist to provide its solubility by the developer. Image transfer has been made into top layer of the photoresist spun on an opaque separating metal film. In E-beam lithography similar approach has been applied for fabrication of nanometer scale structures [3]. The authors of [3] used two selective developers for the top and the bottom layers to control the undercut.
In order to improve E- beam resist profile control we combined methodic from [3] and the Dolan's blanket exposure of the copolymer bottom layer before spinning on of the top PMMA image layer in the bilayer system.
A new resist composition based on PMMA-MAA copolymer with antracene additive was exposed by a single
pulse of KrFexcimer laser (X =248 nm). Its contrast was found to exceed significantly the limit
determined by light absorbtion. Studies of the development kinetics of the resist and corresponding
theoretical reasoning justify the assumption of a thermal activated process (boiling of the residual
dissolver).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.