We present the fabrication, characterization, and demonstration of high-efficiency ultrasound-powered micro- light emitting diodes (μLED) for use in optogenetic applications. InGaN based blue-emitting LED material wafers grown on a patterned sapphire substrate (PSS) were used to assist in the out-scattering of the light. The turn-on voltage of the LEDs is around 2.5 volts and the electrical ideality factor is 1.2 confirming high radiative recombination efficiency. A power density of more than 50 mW/mm2 was obtained from a 130 x 300 μm2 LED with a mesa of 100 μm diameter at 3 mA which is much more than is required to excite channelrhodopsin transfected neural cells. A high external quantum efficiency (EQE) of 33% is obtained at 3 mA measured in an integrating sphere. The peak wavelength of the μLED was measured at 483 nm at different current densities. The μLEDs are integrated directly onto a rectifier and Piezoelectric Transducer (PZT) harvester to realise a highly efficient ultrasound-powered light delivery unit capable to generate mWs of optical power. The concept was validated by powering the integrated device with ultrasound.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.