In this paper, a novel design of tellurite photonic crystal fiber (PCF) is presented and analyzed. The proposed design is analyzed using full-vectorial finite-difference method (FVFDM). The analyzed parameters are the birefringence, effective mode area, nonlinearity and dispersion for the two fundamental polarized modes. The effects of the structure geometrical parameters on the modal properties are studied in detail. The numerical analysis reveals that the proposed design has high birefringence of 0.10568 and high nonlinearity of 4784 W-1 Km-1 and 4030 W-1 Km-1 for the quasi transverse magnetic (TM) and quasi transverse electric (TE) modes, respectively at the operating wavelength of 1.55 μm with low losses for the two fundamental polarized modes. Also, the dispersion of the reported design can be tailored to achieve flat and zero dispersion at the desired wavelength.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.