Porous thin films of dielectric materials have been deposited using e-beam evaporation onto substrates held at highly oblique angles (> 80o), coupled with simultaneous computer controlled substrate motion about two independent axes. This technique, known as glancing angle deposition (GLAD), enables the formation of shaped, isolated nanostructures, including vertical posts, zig-zags, and both helical and polygonal spirals, which exhibit chiral optical properties. GLAD films form the backbone of liquid crystal (LC) hybrid optical materials and devices, and afford key advantages. The
porous nature of the GLAD structures allows LCs to uniformly penetrate the film and modify its optical properties. Addition of LCs to GLAD films improves the properties of the films by reducing optical scattering, enhancing transmission, and accentuating existing chiral and linear optical anisotropies. Further, by mixing a dichroic dye with the LCs, polarization selective optical properties can be introduced into the film which can be used to augment the functionality of GLAD films. It has been found that addressing hybrid GLAD films with an electric field reorients the LCs, allowing one to switch the optical properties of the composite film. This behaviour extends to LCs mixed with dichroic dye, allowing one to switch the selective polarization properties with an applied voltage. Using results based on spectroscopic ellipsometry, we will examine the optical properties and switching behaviour of LC/dichroic dye hybrid
GLAD films and discuss how the results allow one to infer the alignment of LCs in GLAD films, as well how the addition of dichroism to the film affects the selective transmission of both linearly and circularly polarized light.
Polymer helices with submicron dimensions have been fabricated from a variety of isotropic and liquid crystalline polymers with storage moduli ranging from 38MPa to 1.9GPa (measured at 1Hz, room temperature). These helices are made using a double templating process, in which a thin film comprised of independent helical structures deposited using glancing angle deposition (GLAD) acts as the master. In our process the 'positive' structure of the master is copied into a polymer 'negative', which then itself acts as a template for the final film of polymer helices. Liquid crystalline polymers are of particular interest for use in MEMS because highly ordered liquid crystalline polymers can be actuated by exposing them to a stimulus (such as heat) that causes a decrease in order, leading to a reversible, macroscopic change in shape. The phase behavior, optical properties, and mechanical properties of planar aligned monoacrylate liquid crystalline polymers with varying crosslinker content are investigated, in order to determine the composition that will yield the largest deformations upon heating. We find that films with the lowest crosslinker content investigated (2.5%) undergo the largest reduction in birefringence as they are heated, corresponding to a loss in order. However, we also observe that the films with the highest crosslinker content investigated (10%) undergo the largest physical deformation upon heating. SEM images illustrating the deformation of liquid crystalline polymer helices as they are heated are also presented.
Chiral thin films have been demonstrated to have significant optical activity and device applications for gratings, filters, retarders and optical switches. These helically nanostructured films may be microfabricated onto silicon or other substrates utilizing the Glancing Angle Deposition (GLAD) technique with various nanostructures such as helices, chevrons, or polygonal spirals. GLAD is a simple one-step process that enables ready integration of these structures onto optical chips. As proposed by Toader and John, the GLAD technique can be used to fabricate large bandwidth photonic crystals based on the diamond lattice. This structure yields a predicted photonic bandgap as much as 15% of the gap center frequency. Moreover, the corresponding inverse square spiral structure is predicted to have a photonic bandgap as much as 24% of the gap center frequency. We report the details of basic chiral thin film fabrication and calibration. We will also discuss optical characteristics of the chiral films such as the optical rotatory power. Finally, we present the results of our efforts to fabricate square spiral and inverse square spiral structures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.