We review spectroscopic properties, basic laser parameters, and efficient lasing of Pr-doped fluoride materials. Continuous output powers up to 600 mW in the visible spectral range as well as intracavity frequency doubling to the UV spectral region under semiconductor laser pumping is reported. We achieved powers of 600 mW in the visible spectral region and 360 mW of UV radiation corresponding to a conversion efficiency of 61% with an optical-to-optical efficiency of 22%.
In this paper, we report on 500 mW of cw ultraviolet radiation at 360 nm, which has been obtained by intracavity
frequency doubling of a Pr:YLF laser, end pumped by 1.8 W Coherent High Power OPS Laser at 479 nm. We have
demonstrated the scalability of Pr:YLF laser to pump power of 5.3Watts, resulting in real continuous wave 2.5 Watts
of output power at 720 nm and cw 1.3 Watts at 360 nm.
Photonic Design Automation (PDA) describes the design methodologies, software tools and services used to engineer complex photonic networks and products. It offers software integration along the signal path from transmitter to receiver, across the value chain from component and systems manufacturer to network operator, and allows to reduce number of costly and time consuming lab experiments and field trials investigating new system architectures and characterizing optical components. This presentation discusses various modeling aspects along the optical propagation channel. The concept of multiple optical signal representations is briefly introduced, which allows distinguishing between data signals, optical noise, distortions and crosstalk throughout the fiber transmission. The trends of modeling optical transmitters, fibers, doped fiber amplifiers, and of estimating the bit-error rate are outlined. The optimization of multiple pump lasers to achieve high-gain bandwidth fiber Raman amplifiers is discussed. The link of simulation models with real-world component measurement is discussed on an exemplary basis.
To meet the demand for ever-increasing transmission capacity led by the increase in Internet traffic, up to 10 Tb/s transmission capacity experiments have been demonstrated using wavelength division multiplexing (WDM) and up to three transmission bands. Most of today’s commercial WDM systems, however, are capable of 80 channels at 10 Gbit/s in the C-band and similar capacity in the L-band. 40 Gbit/s channel rate WDM systems are not yet widely commercially deployed. To achieve the aforementioned multi-terabit capacity systems for the future high spectral efficiency and the opening of additional transmission wavelength bands will be necessary. Besides the already used conventional C-band and the long-wavelength L-band the short wavelength S-band is the most promising candidate for a third transmission window. A key technology for accessing a new transmission band is the availability of optical amplifiers, which is fulfilled for the S-band by using either gain-shifted thulium doped fiber amplifiers or new erbium doped fiber amplifiers.
In this paper we will provide an overview of amplifier types and their possible usage to upgrade to multi-band transmission as well as we will discuss general design options for upgrading transmission bands. In particular, we will show numerical results for Raman based C- and L-band amplification with multiple Raman pumps and different pumping schemes and an experiment for opening up the S-band by a fiber amplifier approach.
Deployment of 40-Gbit/s technology in metro and core networks is still attractive, to bring down costs and to increase transmission capacity. This paper summarises design issues of 40-Gbit/s WDM systems for their application in wavelength division multiplexed metro and core networks. Parameter tolerances and transmission distances for different modulation formats are numerically and experimentally investigated. Based on Deutsche Telekom's fibre infrastructure, upgrade studies show that polarisation mode dispersion will be the main obstacle when installing 40-Gbit/s technology in deployed fibre infrastructure.
In industry today, professional Photonic Design Automation (PDA) tools are a necessity to enable fast development cycles for the design of optical components, systems and networks. The training of industrial personnel is of great importance in facilitating the full usability of PDA tools tailored to meet these demands. As the market leader of design and planning tools for system integrators and manufacturers of optical transmission systems and components, VPIsystems offers a set of two-day training courses. Attendees are taught on the design of metro WDM networks, high speed DWDM and ultra long-haul WDM systems, analogue and digital cable access systems, EDFA and Raman amplifiers, as well as active devices and circuits. The course work compromises of: (1) lectures on physical and modeling background topics; (2) creation of typical simulation scenarios and; (3) the analysis of results. This course work is facilitated by guided, hands-on lab exercises using VPIsystems software for a variety of practical design situations. In classes of up to 15, each attendee is allocated a computer, thereby allowing for a thorough and speedy training for the individual in all of the covered topics as well as for any extra-curriculum topics to be covered. Since 1999, more than 750 people have graduated from over 60 training courses. In this paper, details of VPIsystems Industry training program will be presented.
The highly competitive global photonics industry has created a significant demand for professional Photonic Design Automation (PDA) tools and personnel trained to use them effectively. In such a dynamic field, CAD-supported courses built around widely used industrial PDA tools provide many advantages, especially when offered through tertiary education institutions (which are ideally suited to producing the future workforce of the Photonics industry). An objective of VPIsystems' University program is to develop tertiary level courses based on VPIsystems' WDM transmission and component modeling software tools. Advantages offered by such courses include: visualizing and aiding the understanding of complex physical problems encountered in the design of fiber-optic communication systems; virtual laboratory exercises that can accurately reproduce the behavior of real systems and components without the prohibitive infrastructure and maintenance costs of real laboratories; flexibility in studying interrelated physical effects individually or in combination to facilitate learning; provide expertise and practical insights in areas, including industry-focused topics, that are not generally covered in traditional tertiary courses; provide exposure to, currently, the most widely used PDA tools in the industry. In this paper, details of VPIsystems' University program and its CAD-supported Photonics courses will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.