In this article, we have demonstrated the promising separation methods for hydrothermally obtained fluorescent molecule formed from citric acid and 1,2 – ethylenediamine. This fluorophore is a derivative of citrazinic acid and is known as a 1,2,3,5-tetrahydro-5-oxo-imidazo[1,2-a]pyridine-7-carboxylic acid (IPCA). Gel electrophoresis and dialysis were applied for the extraction the fluorophore from start materials. IPCA molecule has strong absorption at 350 nm and luminescence at 450 nm with a high quantum yield of around 85±5%. The structure of the fluorophore and polymer-like structures was researched by spectrophotometry, spectrofluorimetry, IR and NMR spectroscopy.
In this paper, we show a low temperature normal pressure synthesis of a blue emissive organic fluorophore. The organic fluorophore molecule - 1, 2, 3, 5-tetrahydro-5-oxo-imidazo [1, 2-a] pyridine-7-carboxylic acid (IPCA) - consists of derivatives of imidazole and benzoic rings with a carboxylic group. The molecule has a strong emission maximum at around 450 nm when excitation of 350 nm us used and is correlated with PL spectra of carbon nanoparticles. The quantum yield was found to be relatively high: around 55%. IPCA luminescent properties are similar to the reported for some carbon nanostructures, obtained via hydrothermal synthesis from citric acid and ethylenediamine.
Photoluminescent (PL) properties of carbon-based nanomaterials obtained on the base of sodium dextran sulfate (DS) were compared. DS water solution, dry powder and co-precipitated inside pores of CaCO3 microparticles solution were thermally treated and clear difference between these materials was found. Effect of spatial restriction of CaCO3 pores showed itself in the identity of PL properties for material, obtained by thermal and hydrothermal treatment; in the absence of CaCO3 microparticles the PL spectra were quite different.
Photoluminescent (PL) carbon nanoparticles (CNPs) have been synthesized by one-step microwave irradiation from water solution of sodium dextran sulfate (DSS) as the sole carbon source. Microwave (MW) method is very simple and cheap and it provides fast synthesis of CNPs. We have varied synthesis time for obtaining high luminescent CNPs. The synthesized CNPs exhibit excitation-dependent photoluminescent. Final CNPs water solution has a blue- green luminescence. CNPs have low cytotoxicity, good photostability and can be potentially suitable candidates for bioimaging, analysis or analytical tests.
New porous silicon preparation technique has been suggested and realized with using vapor etching of silicon in iodine and HF contained vapors. It has been shown that vapor etching allows the preparation of luminescent porous layers on heavy doped (n++ and p++ type) silicon. Comparison of Raman and CW excitation PL measurements of vapor etched porous layer with typical anodized luminescent porous silicon indicated that they have in general similar structural and PL properties. Time resolved photoluminescence measurements reveal however that excitation recombination for iodine contained vapor etched samples is two times faster with higher photoluminescence efficiency, which can be interpreted as increasing of radiative recombination rate for luminescence centers in new nanocrystalline silicon.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.