In Additive Layer Manufacturing, the layer-based nature of the process results in error in the final object, termed staircase error. This error can be reduced by using a smaller layer thickness, and hence more layers, to print the object. However, in 3D printing with stereolithography, the print time is mostly determined by the number of layers, since the movement of the laser in the X-Y plane is much faster than the movement of the build platform. Therefore, using finer layer thicknesses can significantly increase the print time.
In this work, we propose a novel adaptive slicing algorithm that balances accuracy and print time. The proposed, near-optimal, dynamic programming (DP) based algorithm for adaptive slicing minimizes the number of layers subject to a global volumetric error constraint. Our approach reduces slice count by up to 36% (52%) compared to a state of the art adaptive slicing (uniform slicing) method under the same volumetric error. The results were tested on Formlabsunder the same volumetric error. The results were tested on Formlabs Form1+ SLA-based printers. The print time was improved by up to 32% (53%) for a selection of objects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.