Fiber delivery of intense laser radiation is important for a broad range of application sectors, from medicine through to industrial laser processing of materials, and offers many practical system benefits relative to free space solutions. In recent years, photonic crystal fiber technology has revolutionized the dynamic field of optical fibers, bringing with them a wide range of novel optical properties that make them ideally suited to power delivery with unparalleled control over the beam properties. The DTI funded project: Photonic Fibers for Industrial beam DELivery (PFIDEL), aims to develop novel fiber geometries for use as a delivery system for high power industrial lasers and to assess their potential in a range of "real" industrial applications. In this paper we review, from an industrial laser user perspective, the advantages of each of the fibers studied under PFIDEL. We present results of application demonstrations and discuss how these fibers can positively impact the field of industrial laser systems and processes, in particular for direct write and micromachining applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.