Electron Multiplying Charge Coupled Devices (EMCCDs) are used in several astronomical applications thanks to their low noise at high frame rates. Depending on the application, it can be important to estimate the sensor gain, especially since the gain can change over time or depend on operating conditions. In this article we compare five techniques that have been proposed to estimate EMCCD gain using simulated, laboratory and data collected on-sky.
The NEOPol project’s goal is to build and validate in a laboratory setting a prototype polarimeter for Near Earth Objects (NEOs) observations, together with a dedicated automated pipeline for polarimetric data processing and a web service for data storage and visualization. The outcome of the project will be 1) a polarimeter dedicated to NEO observations, 2) one adapter to a prospective telescope interface where the instrument will be mounted, 3) data processing chain to reduce and analyze the data from the polarimeter, 4) a web service for data storage, reduction, visualization and results browsing, 5) desktop UI for polarimeter’s CCD camera and polarimeter sensory data.
P. Soffitta, R. Bellazzini, E. Bozzo, V. Burwitz, A. Castro-Tirado, E. Costa, T. Courvoisier, H. Feng, S. Gburek, R. Goosmann, V. Karas, G. Matt, F. Muleri, K. Nandra, M. Pearce, J. Poutanen, V. Reglero, D. Sabau Maria, A. Santangelo, G. Tagliaferri, C. Tenzer, J. Vink, M. Weisskopf, S. Zane, I. Agudo, A. Antonelli, P. Attina, L. Baldini, A. Bykov, R. Carpentiero, E. Cavazzuti, E. Churazov, E. Del Monte, D. De Martino, I. Donnarumma, V. Doroshenko, Y. Evangelista, I. Ferreira, E. Gallo, N. Grosso, P. Kaaret, E. Kuulkers, J. Laranaga, L. Latronico, D. Lumb, J. Macian, J. Malzac, F. Marin, E. Massaro, M. Minuti, C. Mundell, J. U. Ness, T. Oosterbroek, S. Paltani, G. Pareschi, R. Perna, P.-O. Petrucci, H. B. Pinazo, M. Pinchera, J. P. Rodriguez, M. Roncadelli, A. Santovincenzo, S. Sazonov, C. Sgro, D. Spiga, J. Svoboda, C. Theobald, T. Theodorou, R. Turolla, E. Wilhelmi de Ona, B. Winter, A. M. Akbar, H. Allan, R. Aloisio, D. Altamirano, L. Amati, E. Amato, E. Angelakis, J. Arezu, J.-L. Atteia, M. Axelsson, M. Bachetti, L. Ballo, S. Balman, R. Bandiera, X. Barcons, S. Basso, A. Baykal, W. Becker, E. Behar, B. Beheshtipour, R. Belmont, E. Berger, F. Bernardini, S. Bianchi, G. Bisnovatyi-Kogan, P. Blasi, P. Blay, A. Bodaghee, M. Boer, M. Boettcher, S. Bogdanov, I. Bombaci, R. Bonino, J. Braga, W. Brandt, A. Brez, N. Bucciantini, L. Burderi, I. Caiazzo, R. Campana, S. Campana, F. Capitanio, M. Cappi, M. Cardillo, P. Casella, O. Catmabacak, B. Cenko, P. Cerda-Duran, C. Cerruti, S. Chaty, M. Chauvin, Y. Chen, J. Chenevez, M. Chernyakova, C. C. Cheung, D. Christodoulou, P. Connell, R. Corbet, F. Coti Zelati, S. Covino, W. Cui, G. Cusumano, A. D’Ai, F. D’Ammando, M. Dadina, Z. Dai, A. De Rosa, L. de Ruvo, N. Degenaar, M. Del Santo, L. Del Zanna, G. Dewangan, S. Di Cosimo, N. Di Lalla, G. Di Persio, T. Di Salvo, T. Dias, C. Done, M. Dovciak, G. Doyle, L. Ducci, R. Elsner, T. Enoto, J. Escada, P. Esposito, C. Eyles, S. Fabiani, M. Falanga, S. Falocco, Y. Fan, R. Fender, M. Feroci, C. Ferrigno, W. Forman, L. Foschini, C. Fragile, F. Fuerst, Y. Fujita, J. L. Gasent-Blesa, J. Gelfand, B. Gendre, G. Ghirlanda, G. Ghisellini, M. Giroletti, D. Goetz, E. Gogus, J.-L. Gomez, D. Gonzalez, R. Gonzalez-Riestra, E. Gotthelf, L. Gou, P. Grandi, V. Grinberg, F. Grise, C. Guidorzi, N. Gurlebeck, T. Guver, D. Haggard, M. Hardcastle, D. Hartmann, C. Haswell, A. Heger, M. Hernanz, J. Heyl, L. Ho, J. Hoormann, J. Horak, J. Huovelin, D. Huppenkothen, R. Iaria, C. Inam Sitki, A. Ingram, G. Israel, L. Izzo, M. Burgess, M. Jackson, L. Ji, J. Jiang, T. Johannsen, C. Jones, S. Jorstad, J. J. E. Kajava, M. Kalamkar, E. Kalemci, T. Kallman, A. Kamble, F. Kislat, M. Kiss, D. Klochkov, E. Koerding, M. Kolehmainen, K. Koljonen, S. Komossa, A. Kong, S. Korpela, M. Kowalinski, H. Krawczynski, I. Kreykenbohm, M. Kuss, D. Lai, M. Lan, J. Larsson, S. Laycock, D. Lazzati, D. Leahy, H. Li, J. Li, L.-X. Li, T. Li, Z. Li, M. Linares, M. Lister, H. Liu, G. Lodato, A. Lohfink, F. Longo, G. Luna, A. Lutovinov, S. Mahmoodifar, J. Maia, V. Mainieri, C. Maitra, D. Maitra, A. Majczyna, S. Maldera, D. Malyshev, A. Manfreda, A. Manousakis, R. Manuel, R. Margutti, A. Marinucci, S. Markoff, A. Marscher, H. Marshall, F. Massaro, M. McLaughlin, G. Medina-Tanco, M. Mehdipour, M. Middleton, R. Mignani, P. Mimica, T. Mineo, B. Mingo, G. Miniutti, S. M. Mirac, G. Morlino, A. Motlagh, S. Motta, A. Mushtukov, S. Nagataki, F. Nardini, J. Nattila, G. Navarro, B. Negri, Matteo Negro, S. Nenonen, V. Neustroev, F. Nicastro, A. Norton, A. Nucita, P. O’Brien, S. O’Dell, H. Odaka, B. Olmi, N. Omodei, M. Orienti, M. Orlandini, J. Osborne, L. Pacciani, V. Paliya, I. Papadakis, A. Papitto, Z. Paragi, P. Pascal, B. Paul, L. Pavan, A. Pellizzoni, E. Perinati, M. Pesce-Rollins, E. Piconcelli, A. Pili, M. Pilia, M. Pohl, G. Ponti, D. Porquet, A. Possenti, K. Postnov, I. Prandoni, N. Produit, G. Puehlhofer, B. Ramsey, M. Razzano, N. Rea, P. Reig, K. Reinsch, T. Reiprich, M. Reynolds, G. Risaliti, T. Roberts, J. Rodriguez, M. Rossi, S. Rosswog, A. Rozanska, A. Rubini, B. Rudak, D. Russell, F. Ryde, S. Sabatini, G. Sala, M. Salvati, M. Sasaki, T. Savolainen, R. Saxton, S. Scaringi, K. Schawinski, N. Schulz, A. Schwope, P. Severgnini, M. Sharon, A Shaw, A. Shearer, X. Shesheng, I. -C. Shih, K. Silva, R. Silva, E. Silver, A. Smale, F. Spada, G. Spandre, A. Stamerra, B. Stappers, S. Starrfield, L. Stawarz, N. Stergioulas, A. Stevens, H. Stiele, V. Suleimanov, R. Sunyaev, A. Slowikowska, F. Tamborra, F. Tavecchio, R. Taverna, A. Tiengo, L. Tolos, F. Tombesi, J. Tomsick, H. Tong, G. Torok, D. Torres, A. Tortosa, A. Tramacere, V. Trimble, G. Trinchieri, S. Tsygankov, M. Tuerler, S. Turriziani, F. Ursini, P. Uttley, P. Varniere, F. Vincent, E. Vurgun, C. Wang, Z. Wang, A. Watts, J. Wheeler, K. Wiersema, R. Wijnands, J. Wilms, A. Wolter, K. Wood, K. Wu, X. Wu, W. Xiangyu, F. Xie, R. Xu, S.-P. Yan, J. Yang, W. Yu, F. Yuan, A. Zajczyk, D. Zanetti, R. Zanin, C. Zanni, L. Zappacosta, A. Zdziarski, A. Zech, H. Zhang, S. Zhang, W. Zhang, A. Zoghbi
XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of
writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the
polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently
exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially-
resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics.
Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective
area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega
launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest
Observer competitive program and it is organized as a consortium across Europe with main contributions from
Italy, Germany, Spain, United Kingdom, Poland, Sweden.
M. Feroci, E. Bozzo, S. Brandt, M. Hernanz, M. van der Klis, L.-P. Liu, P. Orleanski, M. Pohl, A. Santangelo, S. Schanne, L. Stella, T. Takahashi, H. Tamura, A. Watts, J. Wilms, S. Zane, S.-N. Zhang, S. Bhattacharyya, I. Agudo, M. Ahangarianabhari, C. Albertus, M. Alford, A. Alpar, D. Altamirano, L. Alvarez, L. Amati, C. Amoros, N. Andersson, A. Antonelli, A. Argan, R. Artigue, B. Artigues, J.-L. Atteia, P. Azzarello, P. Bakala, D. Ballantyne, G. Baldazzi, M. Baldo, S. Balman, M. Barbera, C. van Baren, D. Barret, A. Baykal, M. Begelman, E. Behar, O. Behar, T. Belloni, F. Bernardini, G. Bertuccio, S. Bianchi, A. Bianchini, P. Binko, P. Blay, F. Bocchino, M. Bode, P. Bodin, I. Bombaci, J.-M. Bonnet Bidaud, S. Boutloukos, F. Bouyjou, L. Bradley, J. Braga, M. Briggs, E. Brown, M. Buballa, N. Bucciantini, L. Burderi, M. Burgay, M. Bursa, C. Budtz-Jørgensen, E. Cackett, F. Cadoux, P. Cais, G. Caliandro, R. Campana, S. Campana, X. Cao, F. Capitanio, J. Casares, P. Casella, A. Castro-Tirado, E. Cavazzuti, Y. Cavechi, S. Celestin, P. Cerda-Duran, D. Chakrabarty, N. Chamel, F. Château, C. Chen, Y. Chen, J. Chenevez, M. Chernyakova, J. Coker, R. Cole, A. Collura, M. Coriat, R. Cornelisse, L. Costamante, A. Cros, W. Cui, A. Cumming, G. Cusumano, B. Czerny, A. D'Aì, F. D'Ammando, V. D'Elia, Z. Dai, E. Del Monte, A. De Luca, D. De Martino, J. P. C. Dercksen, M. De Pasquale, A. De Rosa, M. Del Santo, S. Di Cosimo, N. Degenaar, J. W. den Herder, S. Diebold, T. Di Salvo, Y. Dong, I. Donnarumma, V. Doroshenko, G. Doyle, S. Drake, M. Durant, D. Emmanoulopoulos, T. Enoto, M. H. Erkut, P. Esposito, Y. Evangelista, A. Fabian, M. Falanga, Y. Favre, C. Feldman, R. Fender, H. Feng, V. Ferrari, C. Ferrigno, M. Finger, G. Fraser, M. Frericks, M. Fullekrug, F. Fuschino, M. Gabler, D. K. Galloway, J. L. Gálvez Sanchez, P. Gandhi, Z. Gao, E. Garcia-Berro, B. Gendre, O. Gevin, S. Gezari, A. B. Giles, M. Gilfanov, P. Giommi, G. Giovannini, M. Giroletti, E. Gogus, A. Goldwurm, K. Goluchová, D. Götz, L. Gou, C. Gouiffes, P. Grandi, M. Grassi, J. Greiner, V. Grinberg, P. Groot, M. Gschwender, L. Gualtieri, M. Guedel, C. Guidorzi, L. Guy, D. Haas, P. Haensel, M. Hailey, K. Hamuguchi, F. Hansen, D. Hartmann, C. A. Haswell, K. Hebeler, A. Heger, M. Hempel, W. Hermsen, J. Homan, A. Hornstrup, R. Hudec, J. Huovelin, D. Huppenkothen, S. Inam, A. Ingram, J. In't Zand, G. Israel, K. Iwasawa, L. Izzo, H. Jacobs, F. Jetter, T. Johannsen, P. Jenke, P. Jonker, J. Josè, P. Kaaret, K. Kalamkar, E. Kalemci, G. Kanbach, V. Karas, D. Karelin, D. Kataria, L. Keek, T. Kennedy, D. Klochkov, W. Kluzniak, E. Koerding, K. Kokkotas, S. Komossa, S. Korpela, C. Kouveliotou, A. Kowalski, I. Kreykenbohm, L. Kuiper, D. Kunneriath, A. Kurkela, I. Kuvvetli, F. La Franca, C. Labanti, D. Lai, F. Lamb, C. Lachaud, P. Laubert, F. Lebrun, X. Li, E. Liang, O. Limousin, D. Lin, M. Linares, D. Linder, G. Lodato, F. Longo, F. Lu, N. Lund, T. Maccarone, D. Macera, S. Maestre, S. Mahmoodifar, D. Maier, P. Malcovati, J. Malzac, C. Malone, I. Mandel, V. Mangano, A. Manousakis, M. Marelli, J. Margueron, M. Marisaldi, S. Markoff, A. Markowitz, A. Marinucci, A. Martindale, G. Martínez, I. McHardy, G. Medina-Tanco, M. Mehdipour, A. Melatos, M. Mendez, S. Mereghetti, S. Migliari, R. Mignani, M. Michalska, T. Mihara, M. C. Miller, J. M. Miller, T. Mineo, G. Miniutti, S. Morsink, C. Motch, S. Motta, M. Mouchet, G. Mouret, J. Mulačová, F. Muleri, T. Muñoz-Darias, I. Negueruela, J. Neilsen, T. Neubert, A. Norton, M. Nowak, A. Nucita, P. O'Brien, M. Oertel, P. E. H. Olsen, M. Orienti, M. Orio, M. Orlandini, J. Osborne, R. Osten, F. Ozel, L. Pacciani, F. Paerels, S. Paltani, M. Paolillo, I. Papadakis, A. Papitto, Z. Paragi, J. Paredes, A. Patruno, B. Paul, F. Pederiva, E. Perinati, A. Pellizzoni, A. V. Penacchioni, U. Peretz, M. Perez, M. Perez-Torres, B. Peterson, V. Petracek, C. Pittori, J. Pons, J. Portell, A. Possenti, K. Postnov, J. Poutanen, M. Prakash, I. Prandoni, H. Le Provost, D. Psaltis, J. Pye, J. Qu, D. Rambaud, P. Ramon, G. Ramsay, M. Rapisarda, A. Rashevski, I. Rashevskaya, P. Ray, N. Rea, S. Reddy, P. Reig, M. Reina Aranda, R. Remillard, C. Reynolds, L. Rezzolla, M. Ribo, R. de la Rie, A. Riggio, A. Rios, D. Rischke, P. Rodríguez-Gil, J. Rodriguez, R. Rohlfs, P. Romano, E. M. Rossi, A. Rozanska, A. Rousseau, B. Rudak, D. Russell, F. Ryde, L. Sabau-Graziati, T. Sakamoto, G. Sala, R. Salvaterra, D. Salvetti, A. Sanna, J. Sandberg, T. Savolainen, S. Scaringi, J. Schaffner-Bielich, H. Schatz, J. Schee, C. Schmid, M. Serino, N. Shakura, S. Shore, J. Schnittman, R. Schneider, A. Schwenk, A. Schwope, A. Sedrakian, J.-Y. Seyler, A. Shearer, A. Slowikowska, M. Sims, A. Smith, D. Smith, P. Smith, M. Sobolewska, V. Sochora, P. Soffitta, P. Soleri, L. Song, A. Spencer, A. Stamerra, B. Stappers, R. Staubert, A. Steiner, N. Stergioulas, A. Stevens, G. Stratta, T. Strohmayer, Z. Stuchlik, S. Suchy, V. Suleimanov, F. Tamburini, T. Tauris, F. Tavecchio, C. Tenzer, F. Thielemann, A. Tiengo, L. Tolos, F. Tombesi, J. Tomsick, G. Torok, J. M. Torrejon, D. F. Torres, E. Torresi, A. Tramacere, I. Traulsen, A. Trois, R. Turolla, S. Turriziani, S. Typel, P. Uter, P. Uttley, A. Vacchi, P. Varniere, S. Vaughan, S. Vercellone, M. Vietri, F. Vincent, V. Vrba, D. Walton, J. Wang, Z. Wang, S. Watanabe, R. Wawrzaszek, N. Webb, N. Weinberg, H. Wende, P. Wheatley, R. Wijers, R. Wijnands, M. Wille, C. Wilson-Hodge, B. Winter, S. Walk, K. Wood, S. Woosley, X. Wu, R. Xu, W. Yu, F. Yuan, W. Yuan, Y. Yuan, G. Zampa, N. Zampa, L. Zampieri, L. Zdunik, A. Zdziarski, A. Zech, B. Zhang, C. Zhang, S. Zhang, M. Zingale, F. Zwart
The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission.
M. Feroci, J. W. den Herder, E. Bozzo, D. Barret, S. Brandt, M. Hernanz, M. van der Klis, M. Pohl, A. Santangelo, L. Stella, A. Watts, J. Wilms, S. Zane, M. Ahangarianabhari, C. Albertus, M. Alford, A. Alpar, D. Altamirano, L. Alvarez, L. Amati, C. Amoros, N. Andersson, A. Antonelli, A. Argan, R. Artigue, B. Artigues, J.-L. Atteia, P. Azzarello, P. Bakala, G. Baldazzi, S. Balman, M. Barbera, C. van Baren, S. Bhattacharyya, A. Baykal, T. Belloni, F. Bernardini, G. Bertuccio, S. Bianchi, A. Bianchini, P. Binko, P. Blay, F. Bocchino, P. Bodin, I. Bombaci, J.-M. Bonnet Bidaud, S. Boutloukos, L. Bradley, J. Braga, E. Brown, N. Bucciantini, L. Burderi, M. Burgay, M. Bursa, C. Budtz-Jørgensen, E. Cackett, F. Cadoux, P. Caïs, G. Caliandro, R. Campana, S. Campana, F. Capitanio, J. Casares, P. Casella, A. Castro-Tirado, E. Cavazzuti, P. Cerda-Duran, D. Chakrabarty, F. Château, J. Chenevez, J. Coker, R. Cole, A. Collura, R. Cornelisse, T. Courvoisier, A. Cros, A. Cumming, G. Cusumano, A. D'Ai, V. D'Elia, E. Del Monte, A. de Luca, D. de Martino, J. P. C. Dercksen, M. de Pasquale, A. De Rosa, M. Del Santo, S. Di Cosimo, S. Diebold, T. Di Salvo, I. Donnarumma, A. Drago, M. Durant, D. Emmanoulopoulos, M. H. Erkut, P. Esposito, Y. Evangelista, A. Fabian, M. Falanga, Y. Favre, C. Feldman, V. Ferrari, C. Ferrigno, M. Finger, G. Fraser, M. Frericks, F. Fuschino, M. Gabler, D. K. Galloway, J. L. Galvez Sanchez, E. Garcia-Berro, B. Gendre, S. Gezari, A. B. Giles, M. Gilfanov, P. Giommi, G. Giovannini, M. Giroletti, E. Gogus, A. Goldwurm, K. Goluchová, D. Götz, C. Gouiffes, M. Grassi, P. Groot, M. Gschwender, L. Gualtieri, C. Guidorzi, L. Guy, D. Haas, P. Haensel, M. Hailey, F. Hansen, D. Hartmann, C. A. Haswell, K. Hebeler, A. Heger, W. Hermsen, J. Homan, A. Hornstrup, R. Hudec, J. Huovelin, A. Ingram, J. In't Zand, G. Israel, K. Iwasawa, L. Izzo, H. Jacobs, F. Jetter, T. Johannsen, P. Jonker, J. Josè, P. Kaaret, G. Kanbach, V. Karas, D. Karelin, D. Kataria, L. Keek, T. Kennedy, D. Klochkov, W. Kluzniak, K. Kokkotas, S. Korpela, C. Kouveliotou, I. Kreykenbohm, L. Kuiper, I. Kuvvetli, C. Labanti, D. Lai, F. Lamb, P. Laubert, F. Lebrun, D. Lin, D. Linder, G. Lodato, F. Longo, N. Lund, T. J. Maccarone, D. Macera, S. Maestre, S. Mahmoodifar, D. Maier, P. Malcovati, I. Mandel, V. Mangano, A. Manousakis, M. Marisaldi, A. Markowitz, A. Martindale, G. Matt, I. McHardy, A. Melatos, M. Mendez, S. Mereghetti, M. Michalska, S. Migliari, R. Mignani, M. C. Miller, J. M. Miller, T. Mineo, G. Miniutti, S. Morsink, C. Motch, S. Motta, M. Mouchet, G. Mouret, J. Mulačová, F. Muleri, T. Muñoz-Darias, I. Negueruela, J. Neilsen, A. Norton, M. Nowak, P. O'Brien, P. E. H. Olsen, M. Orienti, M. Orio, M. Orlandini, P. Orleański, J. Osborne, R. Osten, F. Ozel, L. Pacciani, M. Paolillo, A. Papitto, J. Paredes, A. Patruno, B. Paul, E. Perinati, A. Pellizzoni, A. V. Penacchioni, M. A. Perez, V. Petracek, C. Pittori, J. Pons, J. Portell, A. Possenti, J. Poutanen, M. Prakash, P. Le Provost, D. Psaltis, D. Rambaud, P. Ramon, G. Ramsay, M. Rapisarda, A. Rachevski, I. Rashevskaya, P. Ray, N. Rea, S. Reddy, P. Reig, M. Reina Aranda, R. Remillard, C. Reynolds, L. Rezzolla, M. Ribo, R. de la Rie, A. Riggio, A. Rios, P. Rodríguez-Gil, J. Rodriguez, R. Rohlfs, P. Romano, E. M. R. Rossi, A. Rozanska, A. Rousseau, F. Ryde, L. Sabau-Graziati, G. Sala, R. Salvaterra, A. Sanna, J. Sandberg, S. Scaringi, S. Schanne, J. Schee, C. Schmid, S. Shore, R. Schneider, A. Schwenk, A. Schwope, J.-Y. Seyler, A. Shearer, A. Smith, D. Smith, P. Smith, V. Sochora, P. Soffitta, P. Soleri, A. Spencer, B. Stappers, A. Steiner, N. Stergioulas, G. Stratta, T. Strohmayer, Z. Stuchlik, S. Suchy, V. Sulemainov, T. Takahashi, F. Tamburini, T. Tauris, C. Tenzer, L. Tolos, F. Tombesi, J. Tomsick, G. Torok, J. M. Torrejon, D. F. Torres, A. Tramacere, A. Trois, R. Turolla, S. Turriziani, P. Uter, P. Uttley, A. Vacchi, P. Varniere, S. Vaughan, S. Vercellone, V. Vrba, D. Walton, S. Watanabe, R. Wawrzaszek, N. Webb, N. Weinberg, H. Wende, P. Wheatley, R. Wijers, R. Wijnands, M. Wille, C. Wilson-Hodge, B. Winter, K. Wood, G. Zampa, N. Zampa, L. Zampieri, L. Zdunik, A. Zdziarski, B. Zhang, F. Zwart, M. Ayre, T. Boenke, C. Corral van Damme, Erik Kuulkers, D. Lumb
The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
The IMPAIR software is a high throughput image deconvolution tool for processing large out-of-core datasets
of images, varying from large images with spatially varying PSFs to large numbers of images with spatially
invariant PSFs. IMPAIR implements a parallel version of the tried and tested Richardson-Lucy deconvolution
algorithm regularised via a custom wavelet thresholding library. It exploits the inherently parallel nature of
the convolution operation to achieve quality results on consumer grade hardware: through the NVIDIA Tesla
GPU implementation, the multi-core OpenMP implementation, and the cluster computing MPI implementation
of the software. IMPAIR aims to address the problem of parallel processing in both top-down and bottom-up
approaches: by managing the input data at the image level, and by managing the execution at the instruction
level. These combined techniques will lead to a scalable solution with minimal resource consumption and maximal
load balancing. IMPAIR is being developed as both a stand-alone tool for image processing, and as a library
which can be embedded into non-parallel code to transparently provide parallel high throughput deconvolution.
M. Feroci, J. den Herder, E. Bozzo, D. Barret, S. Brandt, M. Hernanz, M. van der Klis, M. Pohl, A. Santangelo, L. Stella, A. Watts, J. Wilms, S. Zane, M. Ahangarianabhari, A. Alpar, D. Altamirano, L. Alvarez, L. Amati, C. Amoros, N. Andersson, A. Antonelli, A. Argan, R. Artigue, P. Azzarello, G. Baldazzi, S. Balman, M. Barbera, T. Belloni, G. Bertuccio, S. Bianchi, A. Bianchini, P. Bodin, J.-M. Bonnet Bidaud, S. Boutloukos, J. Braga, E. Brown, N. Bucciantini, L. Burderi, M. Bursa, C. Budtz-Jørgensen, E. Cackett, F. Cadoux, P. Cais, G. Caliandro, R. Campana, S. Campana, P. Casella, D. Chakrabarty, J. Chenevez, J. Coker, R. Cole, A. Collura, T. Courvoisier, A. Cros, A. Cumming, G. Cusumano, A. D'Ai, V. D'Elia, E. Del Monte, D. de Martino, A. De Rosa, S. Di Cosimo, S. Diebold, T. Di Salvo, I. Donnarumma, A. Drago, M. Durant, D. Emmanoulopoulos, Y. Evangelista, A. Fabian, M. Falanga, Y. Favre, C. Feldman, C. Ferrigno, M. Finger, G. Fraser, F. Fuschino, D. Galloway, J. Galvez Sanchez, E. Garcia-Berro, B. Gendre, S. Gezari, A. Giles, M. Gilfanov, P. Giommi, G. Giovannini, M. Giroletti, A. Goldwurm, D. Götz, C. Gouiffes, M. Grassi, P. Groot, C. Guidorzi, D. Haas, F. Hansen, D. Hartmann, C. A. Haswell, A. Heger, J. Homan, A. Hornstrup, R. Hudec, J. Huovelin, A. Ingram, J. J. In't Zand, J. Isern, G. Israel, L. Izzo, P. Jonker, P. Kaaret, V. Karas, D. Karelin, D. Kataria, L. Keek, T. Kennedy, D. Klochkov, W. Kluzniak, K. Kokkotas, S. Korpela, C. Kouveliotou, I. Kreykenbohm, L. Kuiper, I. Kuvvetli, C. Labanti, D. Lai, F. Lamb, F. Lebrun, D. Lin, D. Linder, G. Lodato, F. Longo, N. Lund, T. Maccarone, D. Macera, D. Maier, P. Malcovati, V. Mangano, A. Manousakis, M. Marisaldi, A. Markowitz, A. Martindale, G. Matt, I. McHardy, A. Melatos, M. Mendez, S. Migliari, R. Mignani, M. Miller, J. Miller, T. Mineo, G. Miniutti, S. Morsink, C. Motch, S. Motta, M. Mouchet, F. Muleri, A. Norton, M. Nowak, P. O'Brien, M. Orienti, M. Orio, M. Orlandini, P. Orleanski, J. Osborne, R. Osten, F. Ozel, L. Pacciani, A. Papitto, B. Paul, E. Perinati, V. Petracek, J. Portell, J. Poutanen, D. Psaltis, D. Rambaud, G. Ramsay, M. Rapisarda, A. Rachevski, P. Ray, N. Rea, S. Reddy, P. Reig, M. Reina Aranda, R. Remillard, C. Reynolds, P. Rodríguez-Gil, J. Rodriguez, P. Romano, E. M. Rossi, F. Ryde, L. Sabau-Graziati, G. Sala, R. Salvaterra, A. Sanna, S. Schanne, J. Schee, C. Schmid, A. Schwenk, A. Schwope, J.-Y. Seyler, A. Shearer, A. Smith, D. Smith, P. Smith, V. Sochora, P. Soffitta, P. Soleri, B. Stappers, B. Steltzer, N. Stergioulas, G. Stratta, T. Strohmayer, Z. Stuchlik, S. Suchy, V. Sulemainov, T. Takahashi, F. Tamburini, C. Tenzer, L. Tolos, G. Torok, J. Torrejon, D. Torres, A. Tramacere, A. Trois, S. Turriziani, P. Uter, P. Uttley, A. Vacchi, P. Varniere, S. Vaughan, S. Vercellone, V. Vrba, D. Walton, S. Watanabe, R. Wawrzaszek, N. Webb, N. Weinberg, H. Wende, P. Wheatley, R. Wijers, R. Wijnands, M. Wille, C. Wilson-Hodge, B. Winter, K. Wood, G. Zampa, N. Zampa, L. Zampieri, A. Zdziarski, B. Zhang
The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO’s to yearlong transient outbursts. In this paper we report the current status of the project.
A pleural effusion is excess fluid that collects in the pleural cavity, the fluid-filled space that surrounds the lungs. Surplus amounts of such fluid can impair breathing by limiting the expansion of the lungs during inhalation. Measuring the fluid volume is indicative of the effectiveness of any treatment but, due to the similarity to surround regions, fragments of collapsed lung present and topological changes; accurate quantification of the effusion volume is a difficult imaging problem. A novel code is presented which performs conditional region growth to accurately segment the effusion shape across a dataset. We demonstrate the applicability of our technique in the segmentation of pleural effusion and pulmonary masses.
The Position-Sensitive Detector (PSD) on base of GaAs photocathode and microchannel plate set has been
developed. PSD consists of thick semiconductor photocathode with quantum efficiency about 48% in the range
of 4000-8000AA, two microchannel plates, and 16-electrode collector. The detector has spatial resolution of 20-30
microns for about 5 • 105 pixels, time resolution of 1 us and effective sensitivity up to 40%.
Observational High Time Resolution Astrophysics differs from conventional astrophysics in regard to the detectors
employed which have a time resolution less than that obtainable through CCD with a normal readout τ < a few
minutes. This paper looks at the implications for HTRA from extremely large telescopes and specifically, as an
exemplar its possible impact on pulsar astrophysics. We demonstrate, by using the derived point-spread-function
from models of the Euro50 telescope, the possible effects active and adaptive mirrors have on observing rapidly
varying astronomical objects.
The Euro50 is a proposed 50m extremely large telescope for optical and infrared wavelengths. To study and predict the performance of the complete telescope system, an integrated model combining the structural model of the telescope, optics models, the control systems and the adaptive optics has been established. Wind and atmospheric disturbances are also included in the model. The model is written in MATLAB and C. It is general and modular and built around dedicated ordinary differential equation solvers. The difference in time constants between subsystems is exploited to speed up calculations. The solvers can handle discontinuities and subsystem mode changes. The high degree of modularity allows different telescope designs to be modelled by rearranging subsystem blocks. Certain subsystems, for instance adaptive optics, can also run in a standalone fashion. Parts of the model are parallelized for execution on a large shared memory machine. The resulting architecture of the integrated model and sample results using the code for different telescope models are presented.
A system is described which makes best use of the high quantum efficiency and high count rate capability of avalanche
photodiodes for high time resolution observations of optical pulsars. The use of three APDs allows simultaneous photometry
of the target and a reference star, and the monitoring of the sky background. By minimising the optical components in
the light path the optical efficiency of the system is maximised. The TRIFFID1 and OPTIMA2 have shown that fibre-fed APD arrays can produce excellent results. This, new, system was used on the 6m BTA in November 2003-results on the
Crab pulsar are presented.
In previous work we have countered computational demands faced in integrated modelling by developing and using a parallel toolkit for MATLAB. However the use of an increasingly realistic model makes the computational requirements of the model much larger, particularly in wavefront sensing, reaching a point where simulations of several real time seconds were no longer practical taking up to 3 weeks per second. In response to this problem we have developed optimised C code to which MATLAB off loads computation. This code has numerous advantages over native MATLAB computation. It is portable, scaleable using OpenMP directives and can run remotely using Remote Procedure Calls (RPCs). It has opened up the possibility of exploiting high end Itanium and Opteron based shared memory systems, optimised 3rd party libraries and aggressive compiler optimisation. These factors combined with hand-tuning give a performance increase of the order of 100 times. The interface to the rest of the model remains the same so the overall structure is unchanged. In addition we have developed a similar system based on Message Passing Interface version 2, (MPI-2) which allows us to exploited clusters. Here we present an analysis of techniques used and gains obtained along with a brief discussion of future work.
A new use for a 2-dimensional position sensitive diode (PSD) is described. A duolateral PSD was used with a microchannel
plate image intensifier as a proof-of-concept photon counting (event driven) imager for astronomical imaging and photometry.
This produced an imager capable of counting 25-30 kcps over the astronomical bands B, V & R, with an overall
efficiency of ~19%.
This paper describes the development of a system for mapping the features of the human face to sound. In order to determine how best to express these qualities, magnitude estimation experiments are performed with young visually impaired students. The data dimensions used are overall head ratio (as a size measure) and distance between key facial features. The display dimensions are frequency and tempo.
The use of fluorescence for cancer detection is currently under investigation. Presently, steady-state fluorescence detection methods are in use, but have limitations due to poor contrast between the fluorescence of the tumor and background autofluorescence. Improved contrast can be obtained with time-resolved techniques because of the differing lifetimes between autofluorescence and exogenous photosensitizers that selectively accumulate within tumor tissue. An imaging system is constructed using a fast-gated (200-ps) charge-coupled device (CCD) camera and a pulsed 635-nm laser diode. To characterize the ability of the system to transfer object contrast to an image, the modulation transfer function (MTF) of the system is acquired by employing an extended knife-edge technique. A knife-edge target is assembled by drilling a rectangular well into a block of polymethyl methacrylate (PMMA). The imaging system records images of the photosensitizer, chloroaluminum phthalocyanine tetrasulfonate (AlPcTS), within the well. AlPcTS was chosen to test the system because of its strong absorption of 635-nm, high fluorescence yield, and relatively long fluorescence lifetime (~7.5 ns). The results show that the system is capable of resolving 10–4 M AlPcTS fluorescence as small as 1 mm. The findings of this study contribute to the development of a time-gated imaging system using fluorescence lifetimes.
The Euro50 is a European Extremely Large Telescope. Its enclosure will be among the largest buildings of the world. Determining the maximum wind load is crucial for the survival of the structure, and local forces have an impact on the detailed design such as cladding. Pressure variations on the primary mirror and the wind load on the telescope are important for the development of active optics and segment control systems. To obtain data for the survival wind load as well as for typical observing conditions, the airflow pattern has been studied both with a wind tunnel model and computational fluid dynamics (CFD). Special attention has been given to determination of pressures on the primary mirror. Results are compared for the two methods and also with data available from previous studies and from measurements on existing telescopes. Finally, a typical wind load envelope is defined for the integrated telescope model.
The Euro50 is an extremely large telescope for optical and infrared wavelength with a 50 m primary mirror. It has a segmented, aspherical primary mirror and an aspherical, deformable secondary in a Gregorian layout. A tentative conceptual design exists and has been documented in a study report. Recent activities have concentrated on the science case for extremely large telescopes in the 50 m class and on identification of potential technical "show stoppers". The science case investigation has identified four fields of particular interest. The studies of critical technical issues have concentrated on atmospheric dispersion effects for high-resolution adaptive optics for extremely large telescopes, and on the influence of wind and other disturbances on wavefront control. Wind load on the telescope, the primary mirror and the enclosure has been studied using wind tunnel measurements and computational fluid dynamics. The impact of wind on the total system has been investigated using an integrated model that includes the telescope structure, the primary mirror segment alignment system, the secondary mirror alignment system, and single conjugate adaptive optics using the deformable secondary mirror. The first, tentative results show that wind disturbances may be significant and that the task of correcting for wind residuals may be at least as large for the adaptive optics system as that of correcting for atmospheric aberrations. The results suggest that use of extremely large telescopes for observations of earth-like planets around nearby stars may imply a considerable challenge.
The Euro50 is an astronomical extremely large telescope for optical and infrared wavelength with a 50 m primary mirror. The telescope will have an elaborate control system ("live optics") to correct for atmospheric and telescope aberrations. To study and predict performance of the complete telescope system, an integrated model combining the structural model of the telescope, optics models, the control systems, and the adaptive optics has been established. Wind is taken into account on the basis of wind tunnel measurements and computer fluid dynamics calculations. Atmospheric aberrations are included using a seven-layer atmosphere model. The integrated model is written in Matlab and is run on a cluster computer to achieve acceptable execution times. Dedicated ordinary differential equation solvers have been written and a special toolkit for communication between Matlab processes on different nodes of the cluster computer has been set up. Preliminary results from the complete integrated model, including adaptive optics, are shown.
KEYWORDS: Device simulation, Image processing, Mining, Telescopes, Image filtering, Data archive systems, Observatories, Signal to noise ratio, Astronomy, Data mining
As the astronomical community continues to produce deeper and higher resolution data, it becomes increasingly important to provide tools to the scientist that help mining the data in order to provide only the scientifically interesting images. In the case of uncalibrated archives, this task is especially difficult as it is difficult to know whether an interesting source can be seen on images without actually looking. Here, we show how instrument simulation can be used to lightly process the database-stored image descriptors of the ESO/Wide Field Imager (WFI) archive, and compute the corresponding limiting magnitudes. The end result is a more scientific description of the ESO/ST-ECF archive contents, allowing a more astronomer-friendly archive user interface, and hence increasing the archive useability in the context of a Virtual Observatory. This method is developed for improving the Querator search engine of ESO/HST archive, in the context of the EC funded ASTROVIRTEL project, but also provides an independant tool that can be adapted to other archives.
To take advantage of the recent upsurge in astrophysical research applications of grid technologies coupled with the increase in temporal and spatial coverage afforded to us by dedicated all-sky surveys and on-line data archives, we have developed an automated image reduction and analysis pipeline for a number of different astronomical instruments. The primary science goal of the project is in the study of long-term optical variability of brown dwarfs, although it can be tailored to suit many varied astrophysical phenomena. The pipeline complements Querator, the custom search-engine which accesses the astronomical image archives based at the ST-ECF/ESO centre in Garching, Germany. To increase our dataset we complement the reduction and analysis of WFI (Wide Field Imager, mounted on the 2.2-m MPG/ESO telescope at La Silla) archival images with the analysis of pre-reduced co-spatial HST/WFPC2 images and near infrared images from the DENIS archive. Our pipeline includes CCD-image reduction, registration, astrometry, photometry, and image matching stages. We present sample results of all stages of the pipeline and describe how we overcome such problems as missing or incorrect image meta-data, interference fringing, poor image calibration files etc. The pipeline was written using tasks contained in the IRAF environment, linked together with Unix Shell Scripts and Perl, and the image reduction and analysis is performed using a 40-processor Origin SGI 3800 based at NUI, Galway.
MATLAB and its companion product Simulink are commonly used tools in systems modelling and other scientific disciplines. A cross-disciplinary integrated MATLAB model is used to study the overall performance of the proposed 50m optical and infrared telescope, Euro50. However the computational requirements of this kind of end-to-end simulation of the telescope's behaviour, exceeds the capability of an individual contemporary Personal Computer. By parallelizing the model, primarily on a functional basis, it can be implemented across a Beowulf cluster of generic PCs. This requires MATLAB to distribute in some way data and calculations to the cluster nodes and combine completed results. There have been a number of attempts to produce toolkits to allow MATLAB to be used in a parallel fashion. They have used a variety of techniques. Here we present findings from using some of these toolkits and proposed advances.
New developments in technology have revitalized the specialist area of high-time resolution astrophysics to the point where it is being used routinely to study a wide range of astrophysical environments ranging from normal stars to AGNs. ELTs are an exciting possibility to extend the time domain to fainter sources, more distant sources and to reduce the time resolution to where quantum effects will begin to dominate.
A new modular high time resolution imaging camera system with sub-microsecond timing accuracy has been built in the Physics Dept. of NUI, Galway. The system was designed to be mounted on large telescopes for observing the temporal, spectral and polarisation characteristics of faint astronomical objects, such as optical pulsars. The camera system developed allows simultaneous and independent observing of multiple wavebands of emission from the target objects. This is achieved using optics that split images into their different spectral or polarisation components. The system currently incorporates a multi-anode microchannel array (MAMA) photon detecting and imaging camera with a time resolution of up to 100ns. This is combined with three high quantum efficiency avalanche photodiodes (APDs) with count rates of up to 16 million photons per second. The high time resolution recording system can allow for the removal of telescope tracking inaccuracy and wind shear off-line. This yields better PSFs for bright objects such as crowded globular star clusters. This combination of different detectors allows the system to be operated as a multi purpose, high QE, high time resolution system. The modular nature of the design electronics also allows the addition and removal of detectors without limiting the performance of other elements within the system. The data path is also designed so that archiving integrity is maintained while the data path is simultaneously used for real-time analysis and display systems. Future applications in the bio-medical imaging sector are envisaged for high time resolution fluorescence imaging, and astronomical polarisation studies.
Phthalocyanine derivatives are currently under investigation for use in Photodynamic Therapy, which is a promising treatment for cancer. These materials, which display preferential uptake in cancerous cells, also exhibit high fluorescence yields, and can be used for tumour detection. Problems with steady-state fluorescence techniques such as background autofluorescence can be eliminated by the use of time-resolved techniques. Improved contrast can be obtained with time-resolved techniques because of the differing lifetimes between endogenous and exogenous photosensitisers. An imaging system was constructed using a fast (200 psec) gated CCD camera and a pulsed 635 nm laser diode. A tissue phantom was assembled to test the system by drilling thirty-six wells of varying diameter and depth (10 mm to 1 mm) into a block of polymethyl methacrylate (PMMA). The system was used to record images of chloroaluminum phthalocyanine tetrasulfonate within the wells at differing concentrations in phosphate buffer. A mixture of 1) Intralipid to mimic tissue scatter, 2) Evans blue to mimic tissue absorption, and 3) zinc phthalocyanine tetrasulfonate to mimic healthy tissue autofluorescence of varying depth was placed on top of the PMMA block. These results contribute to the precision of a time-gated imaging system to image living organisms using fluorescence lifetimes.
Porphycenes are currently under investigation for use in Photodynamic therapy, which is a promising treatment for cancer. These materials, which display preferential uptake in cancerous cells, also exhibit high fluorescence yields, and can be used for tumour detection. Problems with steady-state fluorescence techniques such as background autofluorescence can be eliminated by the use of time-resolved techniques. Improved contrast can be obtained with time-resolved techniques because of the differing fluorescence lifetimes between autofluorescence and longer-living exogenous photosensitisers. An imaging system was constructed using a fast (200 ps) gated CCD camera and a pulsed 635 nm laser diode. A tissue phantom composed of polymethyl methacrylate (PMMA) with thirty-six wells of varying diameter and depth (10 mm to 1 mm) was assembled to test the system. The system was used to record images of a porphycene derivative within the wells at differing concentrations in an organic solvent. A tissue imitator was placed on top of the PMMA block at varying thickness. 10-4 M zinc phthalocyanine tetrasulfonate was also placed on top of the block to mimic autofluorescence. The results indicate that the time-gated imaging system can prevent background excitation scatter and fluorescence from a shorter-lived fluorophore from distorting the fluorescence signal from a longer-lived photosensitiser.
The EGRET gamma-ray telescope has left a legacy of unidentified astronomical sources. Most likely, many of the galactic plane sources will be rotation-powered pulsars. Firm identification has been difficult, given the instrument's poor spatial resolution. The problem is exacerbated by the energy dependant Point Spread Function (PSF) and low numbers of source counts. The main method of identifying sources to-date has been a maximum likelihood method. We have taken a different approach, namely that of regularized deconvolution with a spatially invariant PSF, which is used in optical astronomy and medical X-ray imaging. This technique revealed that wavelet denoising of residuals produced smooth, relatively artefact-free images with improved spatial location. Our source location using standard centroiding produced an improvement in relative spatial location, ranging from 10:1 to 2:1 proportional to source strength. Wavelet deconvolution simultaneously achieves background smoothing, while improving sharpness of the resolved objects. The photon-sparse nature of these images makes them an ideal test bed for such techniques. Although deconvolution does not ordinarily conserve flux, in this instance the flux determination is unaffected in all but the most crowded regions. Finally, we show that the energy dependent PSF can be used to identify objects with a restricted range of energy spectra.
There is a family of difficult image-processing scenarios which
involve seeking out and quantifying minute changes within a sequence
of near-identical images. Traditionally these have been dealt with by
carefully registering the images in terms of position, orientiation
and intensity, and subtracting them from some template image. However, for critical measurements, this approach breaks down if the
point-spread-functions (PSFs) vary even slightly from image to
image. Subtraction of registered images whose PSFs are not matched
leads to considerable residual structure, which may be mistakenly
interpreted as real features rather than processing artefacts. In
astronomy, software known as ISIS has been developed to
fully PSF-match image sequences and to facilitate their analysis. We
show here the tremendous improvement in detection rates and
measurement accuracy which ISIS has afforded in our program for the
study of rare variable stars in dense, globular star clusters. We
discuss the genesis from this work of our new program to use ISIS to
search for extra-solar planets in transit across the face of stars in
such clusters. Finally we illustrate an application of ISIS in the
industrial imaging sector, showing how it can be used to detect minute faults in images of products.
Various chemicals used for photodynamic therapy, a promising treatment for cancer, exhibit high fluorescence yields, which can be used for tumour detection. For a chosen few such compounds fluorescence lifetimes, absorption, and steady state fluorescence spectra were measured at different concentrations (ranging from 10-5 M to 10-8 M) in a variety of solvents. The lifetimes were repeated at three different concentrations (ranging from 10-5 M to 10-6 M) in suspensions of 3T3 fibroblast cells.
In this paper we present a parallel code which performs in iterative image deconvolution using either a spatially- invariant point spread function (SI-PSF) or a spatially- variant point spread function (SV-PSF). The basic algorithm is described as well as a description of the parallel implementation. Applications and results in the area of medical x-ray imaging is discussed.
The focus of this paper is to evaluate the clinical performance of the image processing technique which we have developed for computed radiography x-rays. This algorithm, which was presented at the SPIE '99 medical imaging conference, uses iterative deconvolution with a measured point spread function to reduce the effect of scatter. Wavelet denoising is also carried out after each iteration to remove effects due to noise. A random selection of chest x-rays were processed using the algorithm. Both the raw and processed images were presented to the radiologists in a random order. They scored the images with regard to the visibility of anatomical detail and image quality as outlined in the european guidelines on quality criteria for diagnostic radiographic images. The most notable result of the technique is seen in the reduction of noise in the processed image.
KEYWORDS: Point spread functions, Signal to noise ratio, Image processing, Image restoration, Deconvolution, Modulation transfer functions, Breast, Wavelets, Digital mammography, Breast cancer
Digital mammography has the potential to provide radiologists with a tool which can detect tumors earlier and with greater accuracy then film based systems. Although a digital mammography system can provide much greater contrast when compared with a conventional film system, the ability to detect small artifacts associated with breast cancer is limited by a reduced spatial resolution due to screen unsharpness and scatter induced fog. In this paper we model the radiological image formation process as the convolution of a linear shift invariant point spread function (PSF) with the projected tissue density source function. We model the PSF as consisting of two components--screen unsharpness and scatter. We present results from a method designed to compensate for screen unsharpness. The screen PSF was measured and subsequently used in an iterative deconvolution algorithm which incorporated wavelet based de-noising between steps in order to reduce noise amplification. When applied to a University of Leeds TORMAX breast phantom the results show as much as a two-fold improvement in resolution at the 50 percent MTF level. Our results show that the regularized deconvolution algorithm significantly improves the signal-to-noise ratio in the restored image.
The Rutherford Appleton Laboratory Photon Counting Detector (RALPCD) is a highly adaptable intensified imaging system with applications in the x-ray, EUV and visible wavelength regions. The detector comprises commercially available high gain microchannel plate intensifiers fiber optically coupled to CID or CCD cameras, to form a modular detector arrangement. Frames of data from the cameras are detected and centroided in a transputer parallel processor array where correction algorithms using look up tables are used to produce pattern free images at high resolution. Data from the applications are used to illustrate the performance and future advances are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.