Controlling the amount of radiation that a cancer patient receives during treatment is critical to ensure the intended treatment outcome. In this work we use small molecule organic semiconductor devices as radiation sensors/dosimeters which have an effective Z close to that of human tissue. Solution processing provides excellent opportunities for scalability on flexible substrates, allowing them to conform to skin and clothing, and enabling dose measurement at the point of entry to the human body. Previous work using organic field-effect transistors (OFETs) for radiation detection has focused on radiation doses much greater than received by patients during cancer diagnostic imaging and treatment, while this work focuses on the response of OFET-based sensors at low doses relevant to cancer treatment. A systematic change in the threshold voltage of the FETs was observed with cumulative dose. Our results demonstrate that OFETs may be used in dosimetry applications for oncology.
In hybrid halide perovskite, the effectiveness of charge transport in relation to film microstructure and processing has remained elusive. In this study we succeeded in tuning grain size and grain boundary chemistry through solvent vapor annealing, which resulted in an increase in charge-carrier mobility by one order of magnitude. To understand the mechanism responsible for the enhanced charge transport, we performed a series of complementary measurements. Atomic force microscopy revealed an increase in grain size and uniformity, and optical microscopy showed a macroscopic reorganization of the film structure. X-ray diffraction measurements of the MAPbI3-xClx films confirmed the removal of preferential orientation after 20 min of solvent annealing at room temperature, in N,N-dimethylformamide. The presence of additional peaks was assigned to the formation of the solvent complex MAI:DMF:PbI2 and the PbI2:DMF ligand, and the content of these phases was monitored as a function of annealing time. Charge-carrier mobility was evaluated from field-effect transistor measurements in devices with gold top contacts and SiO2 bottom-gate dielectric. We obtained ambipolar transport, with both hole and electron mobility exceeding 10cm2/Vs at room temperature. We propose that this remarkable enhancement in electrical properties resulted from an increase in the grain size and passivation of grain boundaries via formation of intermediate solvent complexes formed from unreacted material. This work has allowed us to gain unprecedented insight into the impact of film morphology on charge transport in perovskite materials, an important milestone towards achieving high-performance optoelectronic devices such as transistors, photovoltaics, light emitting diodes, and photodetectors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.