Microstructural optical waveguides with the hollow core are actively studied as a promising support for heterogeneous immunoassay in development of new optical biosensor elements for medicine and biology. Overcoming of the limitations associated with the low sorption capacity of glass used for the waveguides production is a crucial step for this assay format. In this work the possibility of silanization of microstructural optical waveguides with the hollow core using (3-glycidyloxypropyl) trimethoxysilane and their further application to enzymatic immunoassay was studied.
Photonic crystal fibers with hollow core (HC PCFs) are a specific class of optical fibers characterized by microstructure with periodic holes oriented along fiber. The combination of HC PCF with Raman spectroscopy for biosensors creation is attractive in the terms of the low sample volume, the possibility to increase the integration time without sample degradation and maintaining constant focus during experiments. Here we propose layer-by-layer polyelectrolyte coating of HC PCF inner surface in order to obtain charge-selective absorption of analyte, stabilization of Surface-Enhanced Raman scattering (SERS)-active gold nanoparticles. Distance between SERS hotspots and glass reduces nonlinear signals from glass, and increases signal-to-noise ratio of SERS spectra.
The use of photonic crystal fibers as a basis elements for biosensor construction is a perspective trend. The advantages of this approach are the use of micro and nano volumes of samples and a significant strengthening of the analytical signal while increasing the optical path length. Quantum dots are the most promising fluorescent markers for use in the photonic crystal fibers based analysis.
The advantages of quantum dots, in this case, are associated with stability, wide range of excitation and extremely narrow range of high luminescence intensity. In this work we have investigated the behavior and optical properties of CdSe core-shell nanocrystals (quantum dots) after they including into hollow central defect of hollow core chirped photonic crystal fibers with internal surface modified by polyaniline films.
Photonic crystal fibers (PCFs) with a hollow core are one of the most promising solid support of fiber-optic sensors. The main advantages of PCF as sensor elements in clinical analysis are minimization of optical interactions from the sample and the ability to analyze small volume of samples. At the same time, low sorption capacity of glass which is the basic material for the fabrication of the PCF, limits their use in the development of biosensors. Modification of the inner surface of the PCF can be the solution of the problem.
In this work the synthesis of self-assembled films of polyaniline (PANI) on the inner surface of the PCFs was carried out. The modified PCFs were studied by spectroscopy and electron microscopy. It was found that the covering of the inner surface of the PCFs with PANI leads to a shift of the local maximums of the transmission spectrum PCFs up to 25 nm. These makes possible to design the method of varying of photonic bandgaps location.
We introduce a sensitive method that allows one to distinguish positive and negative agglutination reactions used for blood typing and determination of Rh affinity with a high precision. The method is based on the unique properties of photonic crystal waveguides, i.e., microstructured waveguides (MSWs). The transmission spectrum of an MSW smart cuvette filled by a specific or nonspecific agglutinating serum depends on the scattering, refractive, and absorptive properties of the blood probe. This concept was proven in the course of a laboratory clinical study. The obtained ratio of the spectral-based discrimination parameter for positive and negative reactions (I+/I−) was found to be 16 for standard analysis and around 2 for used sera with a weak activity.
The advantages of microstructured fibers application to photometrical determination of positive and negative agglutination reaction is discussed. One can use this method for blood typing and determination of Rh affinity. The method is based on discrimination of the scattering properties of blood probes with a specific and a non-specific agglutinating serum.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.