A fast image edge enhancement method for moving objects is presented with a spiral phase filter using radial Hilbert transform theory. The spiral phase filter is placed in the Fourier plane of a 4f optical system, and used to process the spectral of objects image to achieve 2-D image edge enhancement of shape-free objects. All the directions of object edge can be enhanced similarly because there is a phase difference π along any diameter direction of the spiral phase filter. The results show that this method has good performance for enhancing the edge of moving objects. The advantages of this method are simple operations, clear edge images, high measurement speed and automatic measurement.
A curvature radius (CR) measurement method using a parallel two-step spatial carrier phase-shifting common-path interferometer is presented. This interferometer is built on a 4f optical system with two windows in the input plane and a ronchi grating outside the fourier plane. A test lens is placed in front of one of the two windows. The phase of the test lens is retrieved from the two phase shifted interferograms recorded using this interferometer and then the profile can be obtained. The CR of the test lens is thus directly derived from the profile according to their geometrical relations. The theoretical model and experimental setup are established to illustrate this method and the measurement processes. Experiments are constructed to verify the effectiveness of the CR measurement using this interferometer. The results prove that this interferometer is an effective approach for the CR measurement with inherent simplicity, high robustness and accuracy.
A method using two-windows common-path interferometry with phase grating is presented to measure the curvature
radius (CR). This interferometry is built using a 4f optical system with binary phase grating implemented by spatial light
modulator (SLM) as spatial filter. The input plane is formed by two windows, which are used for the measured lens and
reference beam, respectively. In the output plane, an interferogram can be achieved by a proper choice of the windows’
spacing with respect to the grating period. The phase of the lens can be retrieved from the shift phase of composite
interferograms achieved by lateral movements of the grating. The curvature radius of the lens is thus directly derived
from the phase function. A theoretical model is also established using Fourier transform theory and phase retrieval
algorithm to describe the measured process using phase-shifting interferometry. Analyzed results indicate that the
method is an effective approach for the radius measurement with inherent simplicity, high robustness and flexibility.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.