To allow efficient browsing of large image collections, we have to provide a summary of its visual content. We present in this paper a robust approach to organize image databases: the Adaptive Robust Competition (ARC). This algorithm relies on a non-supervised database categorization, coupled with a selection of prototypes in each resulting category. This categorization is performed using image descriptors, which describe the visual appearance of the images. A principal component analysis is performed for every feature to reduce dimensionality. Then, clustering is performed in challenging conditions by minimizing a Competitive Agglomeration objective function with an extra noise cluster to collect outliers. The competition is improved to be adaptive to clusters of various densities. In a second step, we provide the user with tools to correct possible misclassifications and personalize the image categories. The constraints to deal with for such a system are the simplicity of the user feedback and the rapidity to propose a new category based on the user's criteria.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.