Propagation of electromagnetic (EM) wave through a meta-material having anisotropic permittivity and permeability tensors is simulated through Finite Difference Time Domain (FDTD) simulations using a technique of transformation optics. Details of the algorithm used in the simulation are given here. Using the simulation code developed, a two-dimensional dual-purpose polarization-sensitive meta-material is designed and demonstrated. Such a material can perform two independent tasks simultaneously for Transverse Electric (TE) and Transverse Magnetic (TM) polarization. All-dielectric design for TM polarization is also proposed and demonstrated to reduce the constrains on physical realization of such materials.
The dynamics of ionization-induced electron injection in the high density (~ 1:2 × 1019cm-3) regime of Laser Wakefield Acceleration (LWFA) was investigated by analyzing betatron X-ray emission inside dielectric capillary tubes. A comparative study of the electron and betatron X-ray properties was performed for both self-injection and ionization-induced injection. Direct experimental evidence of early onset of ionization-induced injection into the plasma wave was obtained by mapping the X-ray emission zone inside the plasma. Particle-In-Cell (PIC) simulations showed that the early onset of ionization-induced injection, due to its lower trapping threshold, suppresses self-injection of electrons. An increase of X-ray fluence by at least a factor of two was observed in the case of ionization-induced injection due to an increased trapped charge compared to self-injection mechanism.
Numerical modeling of laser wakefield electron accelerator inside a long (~ 1 m) dielectric capillary tube is presented. Simulations were performed in a quasi-linear regime of laser wakefield acceleration using a quasi-static particle code, WAKE [ P. Mora and T.M.Antonsen, Jr., Phys. Plasmas 4, 217(1997)]. The code was modified to simulate the acceleration of an externally injected electron bunch and guiding of the laser inside a dielectric capillary tube. Results of simulations demonstrating the acceleration of the injected electron bunch to multi-GeV (~ 5 GeV) energies are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.