Pancreatic cell lines, AsPC1 or BxPC3 were grown into tumors in nude mice, providing models that display different capillary network morphologies. Using a clinical surgical fluorescence imaging system, mice were imaged for 10 minutes following bolus IV injection of 4mg/kg ICG. Mice were subsequently imaged 24 hours after the initial injection to measure the intensity of the tumor relative to a muscle tissue reference for SWIG images. The temporal slope of tissue uptake within the first few minutes was used to estimate vascular permeability.
Initial vascular permeability estimates from flow kinetics imaging were not predictive of the ICG retention in SWIG imaging. This would indicate that lymphatics or other factors likely play a larger role in determining retention.
Hypoxia imaging for surgical guidance has never been possible, yet it is well known that most tumors have microregional chronic and/or cycling hypoxia present as well as chaotic blood flow. The ability to image oxygen partial pressure (pO2) is therefore a unique control of tissue metabolism and can be used in a range of disease applications to understand the complex biochemistry of oxygen supply and consumption.
Delayed fluorescence (DF) from the endogenous molecule protoporphyrin IX (PpIX) has been shown to be a truly unique reporter of the local oxygen partial pressure in tissue. PpIX is endogenously synthesized by mitochondria in most tissues and the particular property of DF emission is directly related to low microenvironmental oxygen concentration. Here it is shown that protoporphyrin IX (PpIX) has a unique emission in hypoxic tumor tissue regions, that is measured as a delayed fluorescence (DF) signal in the red to near-infrared spectrum.
A time-gated imaging system was used for PpIX DF for wide field direct mapping of pO2 changes. Acquiring both prompt and delayed fluorescence in a rapid sequential cycle allowed for imaging oxygenation in a way that was insensitive to the PpIX concentration. By choosing adequate parameters, the video rate acquisition of pO2 images could be achieved, providing real-time tissue metabolic information.
In this report, we show the first demonstration of imaging hypoxia signals from PpIX in a pancreatic cancer model, exhibiting >5X contrast relative to surrounding normal oxygenated tissues. Additionally, tissue palpation amplifies the signal and provides intuitive temporal contrast based upon neoangiogenic blood flow differences.
PpIX DF provides a new mechanism for tumor contrast that could easily be translated to human use as an intrinsic contrast mechanism for oncologic surgical guidance.
The goal of our study was to determine the susceptibility of different pancreatic cell lines to clinically applicable photodynamic therapy (PDT). The efficacy of PDT of two different commercially available photosensitizers, verteporfin and sodium porfimer, was compared using a panel of four different pancreatic cancer cell lines, PANC-1, BxPC-3, CAPAN-2, and MIA PaCa-2, and an immortalized non-neoplastic pancreatic ductal epithelium cell line, HPNE. The minimum effective concentrations and dose-dependent curves of verteporfin and sodium porfimer on PANC-1 were determined. Since pancreatic cancer is known to have significant stromal components, the effect of PDT on stromal cells was also assessed. To mimic tumor–stroma interaction, a co-culture of primary human fibroblasts or human pancreatic stellate cell (HPSCs) line with PANC-1 was used to test verteporfin-PDT-mediated cell death of PANC-1. Two cytokines (TNF-α and IL-1β) were used for stimulation of primary fibroblasts (derived from human esophageal biopsies) or HPSCs. The increased expression of smooth muscle actin (α-SMA) confirmed the activation of fibroblasts or HPSC upon treatment with TNF-α and IL-1β. Cell death assays showed that both sodium porfimer- and verteporfin-mediated PDT-induced cell death in a dose-dependent manner. However, verteporfin-PDT treatment had a greater efficiency with 60 × lower concentration than sodium porfimer-PDT in the PANC-1 incubated with stimulated fibroblasts or HPSC. Moreover, activation of stromal cells did not affect the treatment of the pancreatic cancer cell lines, suggesting that the effects of PDT are independent of the inflammatory microenvironment found in this two-dimensional culture model of cancers.
As of October 2019, the
Subdiffuse spatial frequency domain imaging (sd-SFDI) data of 42 freshly excised, bread-loafed tumor resections from breast-conserving surgery (BCS) were evaluated using texture analysis and a machine learning framework for tissue classification. Resections contained 56 regions of interest (RoIs) determined by expert histopathological analysis. RoIs were coregistered with sd-SFDI data and sampled into ∼4 × 4 mm2 subimage samples of confirmed and homogeneous histological categories. Sd-SFDI reflectance textures were analyzed using gray-level co-occurrence matrix pixel statistics, image primitives, and power spectral density curve parameters. Texture metrics exhibited statistical significance (
Structured light imaging (SLI) with high spatial frequency (HSF) illumination provides a method to amplify native tissue scatter contrast and better differentiate superficial tissues. This was investigated for margin analysis in breast-conserving surgery (BCS) and imaging gross clinical tissues from 70 BCS patients, and the SLI distinguishability was examined for six malignancy subtypes relative to three benign/normal breast tissue subtypes. Optical scattering images recovered were analyzed with five different color space representations of multispectral demodulated reflectance. Excluding rare combinations of invasive lobular carcinoma and fibrocystic disease, SLI was able to classify all subtypes of breast malignancy from surrounding benign tissues (
Previous work has shown that capturing optical emission from plastic discs attached directly to the skin can be a viable means to accurately measure surface dose during total skin electron therapy. This method can provide accurate dosimetric information rapidly and remotely without the need for postprocessing. The objective of this study was to: (1) improve the robustness and usability of the scintillators and (2) enhance sensitivity of the optical imaging system to improve scintillator emission detection as related to tissue surface dose. Baseline measurements of scintillator optical output were obtained by attaching the plastic discs to a flat tissue phantom and simultaneously irradiating and imaging them. Impact on underlying surface dose was evaluated by placing the discs on-top of the active element of an ionization chamber. A protective coating and adhesive backing were added to allow easier logistical use, and they were also subjected to disinfection procedures, while verifying that these changes did not affect the linearity of response with dose. The camera was modified such that the peak of detector quantum efficiency better overlapped with the emission spectra of the scintillating discs. Patient imaging was carried out and surface dose measurements were captured by the updated camera and compared to those produced by optically stimulated luminescence detectors (OSLD). The updated camera was able to measure surface dose with <3 % difference compared to OSLD–Cherenkov emission from the patient was suppressed and scintillation detection was enhanced by 25 × and 7 × , respectively. Improved scintillators increase underlying surface dose on average by 5.2 ± 0.1 % and light output decreased by 2.6 ± 0.3 % . Disinfection had <0.02 % change on scintillator light output. The enhanced sensitivity of the imaging system to scintillator optical emission spectrum can now enable a reduction in physical dimensions of the dosimeters without loss in ability to detect light output.
HSF and CP imaging methods are both known to alter the reflectance image sensitivity to diffuse multiply- scattered and superficially backscattered photons. This results in enhanced contrast, compared to standard wide-field imaging, based on tissue surface microstructure and composition. Measurements in tissue-simulating optical phantoms show that CP images display contrast based on both scattering and absorption, while HSF is specifically sensitive to scatter-only contrast, strongly suppressing absorption-based contrast. By altering the frequency used, the degree of contrast suppression or enhancement can be tuned.1 This suggests that an inexpensive HSF imaging system could have potential to aid diagnostic procedures, where CP is the current state-of-the-art imaging modality.
The goal of this work was to successfully deploy and test an intra-nodal cancer-cell injection model to enable planar fluorescence imaging of a clinically relevant blue dye, specifically methylene blue – used in the sentinel lymph node procedure – in normal and tumor-bearing animals, and subsequently segregate tumor-bearing from normal lymph nodes. This direct-injection based tumor model was employed in athymic rats (6 normal, 4 controls, 6 cancer-bearing), where luciferase-expressing breast cancer cells were injected into axillary lymph nodes. Tumor presence in nodes was confirmed by bioluminescence imaging before and after fluorescence imaging. Lymphatic uptake from the injection site (intradermal on forepaw) to lymph node was imaged at approximately 2 frames/minute. Large variability was observed within each cohort.
View contact details