Examination of head shape during the fetal period is an important task to evaluate head growth and to diagnose fetal abnormalities. Traditional clinical practice frequently relies on the estimation of head circumference (HC) from 2D ultrasound (US) images by manually fitting an ellipse to the fetal skull. However, this process tends to be prone to observer variability, and therefore, automatic approaches for HC delineation can bring added value for clinical practice. In this paper, an automatic method to accurately delineate the fetal head in US images is proposed. The proposed method is divided into two stages: (i) head delineation through a regression convolutional neural network (CNN) that estimates a gaussian-like map of the head contour; and (ii) robust ellipse fitting using a registration-based approach that combines the random sample consensus (RANSAC) and iterative closest point (ICP) algorithms. The proposed method was applied to the HC18 Challenge dataset, which contains 999 training and 335 testing images. Experiments showed that the proposed strategy achieved a mean average difference of -0.11 ± 2.67 mm and a Dice coefficient of 97.95 ± 1.12% against manual annotation, outperforming other approaches in the literature. The obtained results showed the effectiveness of the proposed method for HC delineation, suggesting its potential to be used in clinical practice for head shape assessment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.