Apart from the ever-continuing lateral scaling in the xy-plane to increase the transistor density, additional new concepts find their way to the semiconductor industry too. These concepts are based on making more use of the third dimension. One relatively simple idea would be to create a second layer of transistors to double the transistor density. However, the material requirements are high and the quality of the layer deposition by conventional Chemical Vapor Deposition (CVD) techniques is insufficient. Another application to free up real estate, enabling a smaller cell size and hence an increased transistor density, is to power-up the transistors from the backside. The power rails for logic devices are historically defined in the first Metal layer and consume quite some space. Bringing the power rails to the backside will free up space. However, access to the transistor layer from the backside of the wafer is far from trivial due to the presence of a 775-μm thick silicon substrate. The answer to the challenges mentioned above is wafer-to-wafer direct bonding. Although this technique is not new and already widely used in the semiconductor industry to manufacture CMOS Image Sensors (CIS), it currently finds its way to the high-end logic markets. In case of layer transfer, a crystalline silicon layer is created by bonding a Silicon-On- Insulator (SOI) wafer to the already existing device wafer. After the bonding step, the substrate of the SOI wafer will be removed leaving the crystalline silicon layer behind. Access to the transistor layer from the wafer backside can be enabled by wafer-to-wafer bonding as well. To this end, a completed device wafer will be bonded to an (un-patterned) carrier wafer. The substrate of the original device wafer will be removed, enabling access from the backside. Wafer-towafer bonding applications can only be enabled in case the induced wafer deformations are low or when they can easily be corrected during the subsequent exposures on the scanner. At CEA-Leti, a dedicated test vehicle process flow has been developed to characterize the wafer bonding-induced distortion fingerprints for both the layer transfer and the backside power delivery network applications. The wafer process flow has been simplified without losing the industry relevant on-product overlay challenges. Wafers have been created to enable an extremely dense characterization of the wafer bonding induced fingerprint. The methodology we applied enables us to isolate the wafer bonding induced distortion fingerprint, something that is difficult to do in a production environment. The Back-Side Power Delivery Network (BS-PDN) application is the most challenging one. The initial raw measured wafer distortion fingerprints are around 60 to 80-nm. These numbers can already be easily brought down by scanner corrections to ~15-nm (mean+3σ) without too much effort. However, these numbers are too large for the 2-nm technology node and beyond, and further improvement is required. The goal of this paper is to present the path forward to bring the bonding induced wafer distortion levels to 10-nm and below. We show the capability of the latest and greatest EVG bonding tool hardware and recipe settings available at the time of running the experiments in combination with the correction capability an ASML 0.33NA scanner.
In the field of semiconductor manufacturing, the precise alignment of patterns on a wafer die is critical for the proper functioning of the resulting integrated circuit. However, various factors can cause deformation of the die, which can result in overlay errors and negatively impact device performance. In this work, we focused on the development of die nanotopography metrology, which is used to investigate the topography evolution of five selected dies over several process steps. The impact of manufacturing steps as film deposition, annealing and CMP on die shape deformation and its relation to different pattern densities is measured using optical interferometry. We show that full-die nano-topography measurements are able to detect stress-induced in-plane die distortions as an effect of different annealing processes on SOI or silicon-bulk substrates.
Reducing the overlay error between stacked layers is key to enabling higher pattern density and thus moving towards high performance and more cost effective devices. However, as for specific applications like macrochips with photonic interconnects and high-resolution image sensor flat panels with advance polarizers, customers require product field sizes that are larger than the maximum field size available on scanners. Those large fields are obtained by stitching together multiple standard fields. The overlay performances between two adjacent dies are as aggressive as what is usually required between two stacked layers. For this application, the well-established polynomial overlay model is not suitable as the displacement is measured relatively and the metrology sampling in the field is such that some high order nonlinear (K) terms cannot be modeled independently. Furthermore, a perfect grid is needed in mix and match production. The intrafield correction capability of the exposure tool is not the same for each process steps. For example, no intrinsic K13 can be printed for a mix and match process flow that includes an Extreme Ultra-Violet (EUV) litho step. In addition, some KrF scanners with fewer lens manipulators cannot correct for K9. Measuring the stitching and correcting it at the first layer will prevent printing K terms that are not correctable later in the process. In this paper, the need to characterize and control single-layer overlay among different pattern placement mechanisms intrinsic to the scanner was studied: optical aberrations, field-to-field position, mask placement and registration. An ASML set-up BP-XY-V3 reticle was used to generate a large experimental dataset to validate stitching models supported by Overlay Optimizer (OVO). Overlay measurements were done Resist-in-Resist using new YieldStar (YS) interlaced stitching Diffraction Based Overlay (μDBO) targets that were designed and validated. This paper will present on product metrology results of a scatterometry-based platform showing production results with focus not only on precision and on accuracy, but also assessing target performance and target-to-target delta without process influence. A high order stitching model was developed and verified on a Multi-Product Reticle for a large device application. Trench width control at the field intersection was studied then optimized with proximity correction to ensure a perfect field-to-field junction.
CH (Contact hole) patterning by DSA (Directed Self-Assembly) of BCP (Block Copolymer) is still attracting interest from the semiconductor industry for its CH repair and pitch multiplication advantages in sub-7nm nodes. For several years, extensive studies on DSA CH patterning have been carried out and significant achievements have been reported in materials and process optimization, CMOS integration and design compatibility and advanced characterization [1-4]. According to these studies, if a common agreement was clearly made for the use of PS-b-PMMA material as a potential candidate for DSA CH patterning integration in advanced nodes, the associated guiding template material was not yet selected and is still under investigation. Whereas the most reported guiding template materials for DSA PS-b-PMMA CH patterning are organic-based (resist or organic hard mask), we propose in this work to investigate a DSA process based on inorganic template material (silicon oxide based). Indeed, this latter offers some advantages over organic template: better surface affinity control, higher thermal stability during BCP self-assembly annealing, easier 3D-morphology imaging of DSA patterns and the possibility of wafer rework after the DSA step.
The inorganic template based DSA process was first optimized using the planarization approach [5]. We demonstrated that the silicon oxide thickness should be properly adjusted to allow a good control of the BCP thickness over different guiding template densities. Afterwards, we compared the DSA performances (critical dimension: CD; CD uniformity: CDU, contact misalignment and defectivity) between both inorganic and organic template approaches. Equivalent results were obtained as shown in Figure 1. Finally, we demonstrated that inorganic template allows the rework of DSA wafers: similar CD and CDU for both guiding and DSA patterns were obtained after 3 cycles of rework (Figure 2).
KEYWORDS: Directed self assembly, Lithography, Line width roughness, Nanoimprint lithography, Semiconducting wafers, Etching, Electron beam lithography, System on a chip, Critical dimension metrology, Photoresist processing
In the lithography landscape, EUV technology recovered some credibility recently. However, its large adoption remains uncertain. Meanwhile, 193nm immersion lithography, with multiple-patterning strategies, supports the industry preference for advanced-node developments. In this landscape, lithography alternatives maintain promise for continued R&D. Massively parallel electron-beam and nano-imprint lithography techniques remain highly attractive, as they can provide noteworthy cost-of-ownership benefits. Directed self-assembly lithography shows promising resolution capabilities and appears to be an option to reduce multi-patterning strategies. Even if large amount of efforts are dedicated to overcome the lithography side issues, these solutions introduce also new challenges and opportunities for the integration schemes.
DSA patterning is a promising solution for advanced lithography as a complementary technique to standard and future lithographic technologies. In this work, we focused on DSA grapho-epitaxy process-flow dedicated for contact hole applications using polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) block copolymers. We investigated the impact on the DSA performances of the surface affinity of a guiding pattern design by ArF immersion lithography. The objective was to control and reduce the polymer residue at the bottom of the guiding pattern cavities since it can lead to lower a DSA-related defectivity after subsequent transfer of the DSA pattern. For this purpose, the DSA performances were evaluated as a function of the template surface affinity properties. The surface affinities were customized to enhance DSA performances for a PS-b-PMMA block copolymer (intrinsic period 35nm, cylindrical morphology) by monitoring three main key parameters: the hole open yield (HOY), the critical dimension uniformity (CDU-3σ) and the placement error (PE-3σ). Scanning transmission electron microscopy (STEM) was conjointly carried out on the optimized wafers to characterize the residual polymer thickness after PMMA removal. The best DSA process performances (i.e., hole open yield: 100%, CDU-3σ: 1.3nm and PE-3σ: 1.3nm) were achieved with a thickness polymer residue of 7 nm. In addition, the DSA-related defectivity investigation performed by review-SEM enabled us to achieve a dense (pitch 120nm) contact area superior to 0.01mm2 free of DSA-related defects. This result represents more than 6x105 SEM-inspected valid contacts, attesting the progress achieved over the last years and witnessing the maturity of the DSA in the case of contact holes shrink application.
We focus on the directed self-assembly (DSA) for contact hole (CH) patterning application using polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) block copolymers (BCPs). By employing the DSA planarization process, we highlight the DSA advantages for CH shrink, repair, and multiplication, which are extremely needed to push forward the limits of currently used lithography. Meanwhile, we overcome the issue of pattern density-related defects that are encountered with the commonly used graphoepitaxy process flow. Our study also aims to evaluate the DSA performances as functions of material properties and process conditions by monitoring main key manufacturing process parameters: CD uniformity (CDU), placement error (PE), and defectivity [hole open yield (HOY)]. Concerning process, it is shown that the control of surface affinity and the optimization of self-assembly annealing conditions enable significant enhancement of CDU and PE. Regarding material properties, we show that the best BCP composition for CH patterning should be set at 70/30 of PS/PMMA total weight ratio. Moreover, it is found that increasing the PS homopolymer content from 0.2% to 1% has no impact on DSA performances. Using a C35 BCP (cylinder-forming BCP of natural period L0=35 nm), good DSA performances are achieved: CDU-3σ=1.2 nm, PE-3σ=1.2 nm, and HOY=100%. Finally, the stability of DSA process is also demonstrated through the process follow-up on both patterned and unpatterned surfaces over several weeks.
Directed self-assembly (DSA) of block copolymers has shown interesting results for contact hole application, as a vertical interconnection access for CMOS sub-10 nm technology. The control of critical dimension uniformity (CDU), defectivity, and placement error (PE) is challenging and depends on multiple processes and material parameters. This paper reports the work done using the 300-mm pilot line available in materials to integrate the DSA process on contact and via level patterning. In the first part, a reliable methodology for PE measurement is defined. By tuning intrinsic edge detection parameters on standard reference images, the working window is determined. The methodology is then implemented to analyze the experimental data. The impact of the planarization process on PE and the importance of PE as a complement of CDU and hole open yield for process window determination are discussed.
Directed Self-Assembly (DSA) is a well-known candidate for next generation sub-15nm half-pitch lithography. [1-2] DSA processes on 300mm wafers have been demonstrated for several years, and have given a strong impression due to finer pattern results. [3-4] On t he other hand, specific issues with DSA processes have begun to be clear as a result of these recent challenges. [5-6] Pattern placement error, which means the pattern shift after DSA fabrication, is recognized as one of these typical issues. Coat-Develop Track systems contribute to the DSA pattern fabrication and also influence the DSA pattern performance.[4] In this study, the placement error was investigated using a simple contact-hole pattern and subsequent contact-hole shrink process implemented on the SOKUDO DUO track. Thus, we will show the placement error of contact-hole shrink using a DSA process and discuss the difference between DSA and other shrink methods.
In this paper, we focus on the directed-self-assembly (DSA) application for contact hole (CH) patterning using polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) block copolymers (BCPs). By employing the DSA planarization process, we highlight the DSA advantages for CH shrink, repair and multiplication which are extremely needed to push forward the limits of currently used lithography. Meanwhile, we overcome the issue of pattern densityrelated- defects that are encountered with the commonly-used graphoepitaxy process flow. Our study also aims to evaluate DSA performances as function of material properties and process conditions by monitoring main key manufacturing process parameters: CD uniformity (CDU), placement error (PE) and defectivity (Hole Open Yield = HOY). Concerning process, it is shown that the control of surface affinity and the optimization of self-assembly annealing conditions enable to significantly enhance CDU and PE. Regarding materials properties, we show that the best BCP composition for CH patterning should be set at 70/30 of PS/PMMA total weight ratio. Moreover, it is found that increasing the PS homopolymer content from 0.2% to 1% has no impact on DSA performances. Using a C35 BCP (cylinder-forming BCP of natural period L0 = 35nm), high DSA performances are achieved: CDU-3σ = 1.2nm, PE-3σ = 1.2nm and HOY = 100%. The stability of DSA process is also demonstrated through the process follow-up on both patterned and unpatterned surfaces over several weeks. Finally, simulation results, using a phase field model based on Ohta-Kawasaki energy functional are presented and discussed with regards to experiments.
Patterning process control has undergone major evolutions over the last few years. Critical dimension, focus, and overlay control require deep insight into process-variability understanding to be properly apprehended. Process setup is a complex engineering challenge. In the era of mid k1 lithography (>0.6), process windows were quite comfortable with respect to tool capabilities, therefore, some sources of variability were, if not ignored, at least considered as negligible. The low k1 patterning (<0.4) era has broken down this concept. For the most advanced nodes, engineers need to consider such a wide set of information that holistic processing is often mentioned as the way to handle the setup of the process and its variability. The main difficulty is to break down process-variability sources in detail and be aware that what could have been formerly negligible has become a very significant contributor requiring control down to a fraction of a nanometer. The scope of this article is to highlight that today, engineers have to zoom deeper into variability. Even though process tools have greatly improved their capabilities, diminishing process windows require more than tool-intrinsic optimization. Process control and variability compensations are major contributors to success. Some examples will be used to explain how complex the situation is and how interlinked processes are today.
Density multiplication and contact shrinkage of patterned templates by directed self-assembly (DSA) of block copolymers (BCP) stands out as a promising alternative to overcome the limitations of conventional lithography. The main goal of this paper is to investigate the potential of DSA to address contact and via levels patterning with high resolution by performing either CD shrink or contact multiplication. Different DSA processes are benchmarked based on several success criteria such as: CD control, defectivity (missing holes) as well as placement control. More specifically, the methodology employed to measure DSA contact overlay and the impact of process parameters on placement error control is detailed. Using the 300mm pilot line available in LETI and Arkema’s materials, our approach is based on the graphoepitaxy of PS-b-PMMA block copolymers. Our integration scheme, depicted in figure 1, is based on BCP self-assembly inside organic hard mask guiding patterns obtained using 193i nm lithography. The process is monitored at different steps: the generation of guiding patterns, the directed self-assembly of block copolymers and PMMA removal, and finally the transfer of PS patterns into the metallic under layer by plasma etching. Furthermore, several process flows are investigated, either by tuning different material related parameters such as the block copolymer intrinsic period or the interaction with the guiding pattern surface (sidewall and bottom-side affinity). The final lithographic performances are finely optimized as a function of the self-assembly process parameters such as the film thickness and bake (temperature and time). Finally, DSA performances as a function of guiding patterns density are investigated. Thus, for the best integration approach, defect-free isolated and dense patterns for both contact shrink and multiplication (doubling and more) have been achieved on the same processed wafer. These results show that contact hole shrink and multiplication approach using DSA is well compatible with the conventional integration used for CMOS technology.
Directed Self-Assembly (DSA) of Block Copolymers (BCP) is one of the most promising solutions for sub-10 nm nodes. However, some challenges need to be addressed for a complete adoption of DSA in manufacturing such as achieving DSA-friendly design, low defectivity and accurate pattern placement. In this paper, we propose to discuss the DSA integration flows using graphoepitaxy for contact-hole patterning application. DSA process dependence on guiding pattern density has been studied and solved thanks to a new approach called “DSA planarization”. The capabilities of this new approach have been evaluated in terms of defectivity, Critical Dimension (CD) control and uniformity before and after DSA etching transfer.
Advanced CMOS nodes require more and more information to get the wafer process well setup. Process tool intrinsic capabilities are not sufficient to secure specifications. APC systems (Advanced Process Control) are being developed in waferfab to manage process context information to automatically adjust and tune wafer processing. The APC manages today Run to Run component from and between various process steps plus a sub-recipes/profiles corrections management. This paper will outline the architecture of an integrated/holistic process control system for a high mix advanced logic waferfoundry.
This paper reports on the etch challenges to overcome for the implementation of PS-b-PMMA block copolymer’s Directed Self-Assembly (DSA) in CMOS via patterning level. Our process is based on a graphoepitaxy approach, employing an industrial PS-b-PMMA block copolymer (BCP) from Arkema with a cylindrical morphology. The process consists in the following steps: a) DSA of block copolymers inside guiding patterns, b) PMMA removal, c) brush layer opening and finally d) PS pattern transfer into typical MEOL or BEOL stacks. All results presented here have been performed on the DSA Leti’s 300mm pilot line. The first etch challenge to overcome for BCP transfer involves in removing all PMMA selectively to PS block. In our process baseline, an acetic acid treatment is carried out to develop PMMA domains. However, this wet development has shown some limitations in terms of resists compatibility and will not be appropriated for lamellar BCPs. That is why we also investigate the possibility to remove PMMA by only dry etching. In this work the potential of a dry PMMA removal by using CO based chemistries is shown and compared to wet development. The advantages and limitations of each approach are reported. The second crucial step is the etching of brush layer (PS-r-PMMA) through a PS mask. We have optimized this step in order to preserve the PS patterns in terms of CD, holes features and film thickness. Several integrations flow with complex stacks are explored for contact shrinking by DSA. A study of CD uniformity has been addressed to evaluate the capabilities of DSA approach after graphoepitaxy and after etching.
A roadmap extending far beyond the current 22nm CMOS node has been presented several times. [1] This roadmap
includes the use of a highly regular layout style which can be decomposed into "lines and cuts."[2] The "lines" can be
done with existing optical immersion lithography and pitch division with self-aligned spacers.[3] The "cuts" can be done
with either multiple exposures using immersion lithography, or a hybrid solution using either EUV or direct-write ebeam.[
4] The choice for "cuts" will be driven by the availability of cost-effective, manufacturing-ready equipment and
infrastructure.
Optical lithography improvements have enabled scaling far beyond what was expected; for example, soft x-rays (aka
EUV) were in the semiconductor roadmap as early as 1994 since optical resolution was not expected for sub-100nm
features. However, steady improvements and innovations such as Excimer laser sources and immersion photolithography
have allowed some manufacturers to build 22nm CMOS SOCs with single-exposure optical lithography.
With the transition from random complex 2D shapes to regular 1D-patterns at 28nm, the "lines and cuts" approach can
extend CMOS logic to at least the 7nm node. The spacer double patterning for lines and optical cuts patterning is
expected to be used down to the 14nm node. In this study, we extend the scaling to 18nm half-pitch which is
approximately the 10-11nm node using spacer pitch division and complementary e-beam lithography.
For practical reasons, E-Beam lithography is used as well to expose the "mandrel" patterns that support the spacers.
However, in a production mode, it might be cost effective to replace this step by a standard 193nm exposure and
applying the spacer technique twice to divide the pitch by 3 or 4.
The Metal-1 "cut" pattern is designed for a reasonably complex logic function with ~100k gates of combinatorial logic
and flip-flops. Since the final conductor is defined by a Damascene process, the "cut" patterns become islands of resist
blocking hard-mask trenches. The shapes are often small and positioned on a dense grid making this layer to be the most
critical one. This is why direct-write e-beam patterning, possibly using massively parallel beams, is well suited for this
task. In this study, we show that a conventional shaped beam system can already pattern the 11nm node Metal-1 layer
with reasonable overlay margin.
The combination of design style, optical lithography plus pitch-division, and e-beam lithography appears to provide a
scaling path far into the future.
Double patterning with Spacer (DPS) is now widely accepted as a viable technology for the further extension of
193nm lithography towards the 22nm /18nm technology nodes. DPS was primary introduced for the manufacturing
of flash memory due to its 1D design geometry. However, DPS is now becoming a main stream technology for
advanced technology nodes for logic product.
DPS results in alignment and overlay marks with reduced image contrast after completion of spacer patterning.
Consequently there is an elevated risk that the overlay performance of the cut lithography layer on the spacer [1]
may be negatively impacted. Initial studies indicate that it may be necessary to consider new mark designs. In this
paper, we discuss the basic design of the Nikon alignment marks and make a statistical assessment of their relative
performance.
The self aligned spacer process results in asymmetric spacers. That are two types of surface (inside and outside)
of the spacer are formed. The impact of this asymmetry is also being assessed. Mark geometries are characterized
with 3D-AFM measurement and alignment / overlay performance analysis.
Double Patterning Technology (DPT) is now considered as the mainstream technology for 32 nm node lithography. The main DPT processes have been developed according targeted applications: spacer and pitch splitting either by dual line or dual trench approaches. However, the successful implementation of DPT requires overcoming certain technical challenges in terms of exposure tool capability, process integration, mask performance and finally metrology (1, 2). For pitch splitting process, the mask performance becomes critical as the technique requires a set of two masks (3).
This paper will focus on the mask impact to the global critical dimension (CD) and overlay (OVL) errors for DPT. The mask long-distance and local off target CD variation and image placement were determined on DP features at 180 nm and 128 nm pitches, dedicated to 45 nm and 32 nm nodes respectively. The mask data were then compared to the wafer CD and OVL results achieved on same DP patterns.
Edge placement errors have been programmed on DP like-structures on reticle in order to investigate the offsets impact on CD and image placement. The CD lines increases with asymmetric spaces adjacent to the drawn lines for offsets higher than 12 nm, and then have been compared to the corresponding density induced by individual dense and sparse symmetric edges and have been correlated to the simulated prediction. The single reticle trans-X offsets were then compared to the impact on CD by OVL errors in the double patterning strategy.
Finally, the pellicle-induced reticle distortions impact on image placement errors was investigated (4). The mechanical performance of pellicle was achieved by mask registration measurements before and after pellicle removal.
The reticle contribution to the overall wafer CD and OVL errors budgets were addressed to meet the ITRS requirements.
Double patterning (DP) is today the main solution to extend immersion lithography to the 32 nm node and beyond. Pitch
splitting process with hardmask transfer and spacer process have been developed at CEA-LETI-Minatec. This paper
focuses on experimental data using dry ArF lithography with a k1 factor of 0.20 ; the relative impact of each DP step on
overlay and CD uniformity budgets is analyzed. In addition, topography issues related to the presence of the patterned
hard mask layer during the second imaging step is also investigated. Tool-to-itself overlay, image placement on the
reticle and wafer deformation induced by this DP process are evaluated experimentally and resulting errors on CD
budget have been determined. CD uniformity error model developed by Nikon describing the relationship between CD
and overlay in different DP processes is validated experimentally.
The problem of the alignment tree for double patterning (DP) is presented. When the 2nd DP exposure is aligned to the
underlying zero layer, the space CD uniformity is shown to be well outside the budget for the 32 nm HP node. Aligning
the 2nd DP layer to the zero layer gives better overlay results, but aligning the 2nd DP pattern to the 1st DP pattern gives
results well within the overlay requirements for the 32 nm HP. Aligning the 2nd DP layer to the 1st DP layer is
recommended to give the best CD uniformity and overlay results. Experimental results show, qualitatively, the CD
uniformity is significantly worse when the 2nd pattern is aligned to the zero layer, but the overlay for both alignment trees
could be corrected to roughly the same levels. The raw overlay data shows a significantly different signature for the two
alignment trees, possibly caused by alignment mark signal differences between the marks on the zero and 1st layers, or
distortion of the zero layer after the first etch. The requirements for a DP exposure tool were reviewed and can be
summarized as improved dose control, improved overlay performance, and significantly higher throughput.
Double patterning (DP) is today the accepted solution to extend immersion lithography to the 32 nm node and beyond.
Pitch splitting process and spacer process have been developed at CEA-LETI-Minatec. This paper will focus on the
optimization of dry etching process to achieve these two patterning techniques. For each approach, we first discuss the
choices of the starting integration flows based on the requirements to etch the final devices. Then, we develop how the
etching steps were optimized to get a good step by step CD control for 45nm/45nm features.
Double patterning (DP) has now become a fixture on the development roadmaps of many device manufacturers for half pitches of 32 nm and beyond. Depending on the device feature, different types of DP and double exposure (DE) are being considered. This paper focuses on the requirements of the most complex forms of DP, pitch-splitting (where line density is doubled through two exposures) and spacer processes (where a deposition process is used to achieve the final pattern). Budgets for critical dimension uniformity and overlay are presented along with tool and process requirements to achieve these budgets. Experimental results showing 45-nm lines and spaces using dry ArF lithography with a k1 factor of 0.20 are presented to highlight some of the challenges. Finally, alternatives to DP are presented.
Double patterning (DP) has now become a fixture on the development roadmaps of many device manufacturers for half
pitches of 32 nm and beyond. Depending on the device feature, different types of DP and double exposure (DE) are
being considered. This paper focuses on the requirements of the most complex forms of DP, pitch splitting, where line
density is doubled through two exposures, and sidewall processes, where a deposition process is used to achieve the final
pattern. Budgets for CD uniformity and overlay are presented along with tool and process requirements to achieve these
budgets. Experimental results showing 45 nm lines and spaces using dry ArF lithography with a k1 factor of 0.20 are
presented to highlight some of the challenges. Finally, alternatives to double patterning are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.