GOES-16, the first new generation of NOAA’s geostationary satellite, was launched on November 19, 2016. The Advanced Baseline Imager (ABI) is the key payload of the mission. The instrument performance and satellite intercalibration results show that infrared (IR) radiances are well calibrated and very stable. Yet during its early post-launch tests (PLT) and post-launch product tests (PLPT) period, several calibration anomalies were identified with the IR bands: 1) the IR measurements of the Continental United States (CONUS) and mesoscale (MESO) images demonstrated an artificial periodicity of 15 minutes - Periodic Infrared Calibration Anomaly (PICA), in line with the Mode-3 timeline; and 2) the calibration coefficients displayed small discontinuities twice a day around satellite noon and midnight, which resulted in slight detectable diurnal calibration variations. This work is to report our investigation to the root causes of these anomalies, validation of the anomaly corrections, and assessment of the impacts of the corrections on the radiance quality. By examining the radiometrically calibrated space-swath radiance collected from the moon chasing events, it was found that these anomalies were attributed to the residuals of the spatial uniformity corrections for the scan mirrors. A new set of scan mirror emissivity correction Look-Up Tables (LUTs) were later delivered by the Vendor and implemented operationally. Further analyses showed that the new emissivity LUTs significantly reduced the periodic radiometric variation and diurnal variations. The same method will be applied to validate the IR spatial uniformity for the future GOES-R series ABI instruments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.