KEYWORDS: Education and training, Data modeling, Performance modeling, Denoising, Signal to noise ratio, Scanning electron microscopy, Manufacturing, Critical dimension metrology
Semiconductor manufacturing relies on Critical Dimension Scanning Electron Microscopy (CD-SEM) for precision in resist pattern measurements. High-resolution CD-SEM images, while desirable, can damage the resist due to increased electron beam exposure with higher frame numbers. To address this, Noise2Noise, a deep-learning noise reduction method, is introduced. Noise2Noise employs multiple noise images for unsupervised noise reduction. However, it struggles with unknown samples and limited training data. This research enhances the Noise2Noise model by introducing Attention and Residual-Recurrent structures to extract high-precision images from low-resolution inputs (1 frame). The Attention-boosted Noise2Noise model in particular exhibits superior accuracy with improved Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) for unseen patterns. Overall, the modeling error characterized by (ΔCD/CD) has been reduced compared to the conventional Noise2Noise method, promising improved CD-SEM accuracy for advanced CMOS manufacturing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.