Low cost and highly reliable integrated optical gyroscopes with a resolution of ≤ 10 °/h can potentially replace the bulk optical angular velocity sensors which are currently being used in medium/high performance applications. i.e. missiles and telescopes. Therefore, research aiming to fabricate chip-based optical gyroscopes are attracting attention and integrated optics is an approach that would provide a product with moderate performance.
Hybrid integration of different materials will allow for different functionalities such as passive, amplifying, nonlinear, electro-optic, detection etc to build “system on a chip” devices. The vertically stacked layer design commonly proposed significantly increases the difficulty of the lithography process for the bottom-most layer due to the overlying topology. A methodology for significantly improving the fabrication tolerance of planar directional couplers is therefore presented. A parametric design study reveals that significant dimensional sensitivity improvements exist for certain center-to-center spacings for both power and wavelength splitters.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.