In many applications for minimal invasive surgery the acquisition of intra-operative medical images is helpful if not absolutely necessary. Especially for Brachytherapy imaging is critically important to the safe delivery of the therapy. Modern computed tomography (CT) and magnetic resonance (MR) scanners allow minimal invasive procedures to be performed under direct imaging guidance. However, conventional scanners do not have real-time imaging capability and are expensive technologies requiring a special facility. Ultrasound (U/S) is a much cheaper and one of the most flexible imaging modalities. It can be moved to the application room as required and the physician sees what is happening as it occurs.
Nevertheless it may be easier to interpret these 3D intra-operative U/S images if they are used in combination with less noisier preoperative data such as CT. The purpose of our current investigation is to develop a registration tool for automatically combining pre-operative CT volumes with intra-operatively acquired 3D U/S datasets. The applied alignment procedure is based on the information theoretic approach of maximizing the mutual information of two arbitrary datasets from different modalities.
Since the CT datasets include a much bigger field of view we introduced a bounding box to narrow down the region of interest within the CT dataset. We conducted a phantom experiment using a CIRS Model 53 U/S Prostate Training Phantom to evaluate the feasibility and accuracy of the proposed method.
All over the world 20% of men are expected to develop prostate cancer sometime in his life. In addition to surgery - being the traditional treatment for cancer - the radiation treatment is getting more popular. The most interesting radiation treatment regarding prostate cancer is Brachytherapy radiation procedure. For the safe delivery of that therapy imaging is critically important. In several cases where a CT device is available a combination of the information provided by CT and 3D Ultrasound (U/S) images offers advantages in recognizing the borders of the lesion and delineating the region of treatment. For these applications the CT and U/S scans should be registered and fused in a multi-modal dataset.
Purpose of the present development is a registration tool (registration, fusion and validation) for available CT volumes with 3D U/S images of the same anatomical region, i.e. the prostate. The combination of these two imaging modalities interlinks the advantages of the high-resolution CT imaging and low cost real-time U/S imaging and offers a multi-modality imaging environment for further target and anatomy delineation. This tool has been integrated into the visualization software "InViVo" which has been developed over several years in Fraunhofer IGD in Darmstadt.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.