In this present study we applied Raman and fluorescence microscopy to investigate the internalisation, cellular distribution and effects on cell metabolism of photosensitizer nanoparticles for photodynamic therapy in fibroblasts and macrophages.
Living colon carcinoma cells were investigated by confocal Raman microspectroscopy. An in vitro model of tumor
progression was established. Evaluation of data sets by cluster analysis reveals that lipid bodies might be a valuable
diagnostic parameter for early carcinogenesis.
The investigation of living cells at physiological conditions requires very sensitive, sophisticated, non invasive methods.
In this study, Raman spectral imaging is used to identify different biomolecules inside of cells. Raman spectroscopy, a
chemically and structurally sensitive measuring technique, is combined with high resolution confocal microscopy. In
Raman spectral imaging mode, a complete Raman spectrum is recorded at every confocal image point, giving insight
into the chemical composition of each sample compartment. Neuroblastoma is the most common solid extra-cranial
tumor in children. One of the unique features of neuroblastoma cells is their ability to differentiate spontaneously,
eventually leading to complete remission. Since differentiation agents are currently used in the clinic for neuroblastoma
therapy, there is a special need to develop non-invasive and sensitive new methods to monitor neuroblastoma cell
differentiation. Neuroblastoma cells at different degrees of differentiation were analysed with the confocal Raman
microscope alpha300 R (WITec GmbH, Germany), using a frequency doubled Nd:YAG laser at 532 nm and 10 mW for
excitation. Integration time per spectrum was 80-100 ms. A lateral resolution in submicrometer range was achieved by
using a 60x water immersion lens with a numerical aperture of 1,0. Raman images of cells were generated from these
sets of data by either integrating over specific Raman bands, by basis analysis using reference spectra or by cluster
analysis. The automated evaluation of all spectra results in spectral unmixed images providing insight into the chemical
composition of the sample. With these procedures, different cell organelles, cytosol, membranes could be distinguished.
Since neuroblastoma cells at high degree of differentiation overproduce noradrenaline, an attempt was made to trace the
presence of this neurotransmitter as a marker for differentiation. The results of this work may have applications in the
monitoring of molecular changes and distribution of biomolecules and in particular of low molecular weight markers as
they occur during the differentiation of neuroblastoma cells.
Although during the last years, significant progress was made in cancer diagnosis, using either intrinsic or specially designed fluorophores, still problems exist, due to difficulties in spectral separation of highly overlapping probes or in lack of specificity. Many of the problems could be circumvented by focusing on time-resolved methods. In combination with spectral resolved detection (spectral fluorescence lifetime imaging, SLIM) highly sophisticated fluorescence lifetime imaging can be performed which might improve specificity of cell diagnosis.
To record lifetime images (τ-mapping) with spectral resolution a setup was realized consisting of a laser scanning microscope equipped with a 16 channel array for time-correlated single photon counting (TCSPC) and a spectrograph in front of the array. A Ti:Saphir laser can be used for excitation or alternatively ps diode lasers. With this system the time- and spectral-resolved fluorescence characteristics of different fluorophores were investigated in solution and in cell culture. As an example, not only the mitochondria staining dye rhodamine 123 could be easily distinguished from DAPI, which intercalates into nucleic acids, but also different binding sites of DAPI. This was proved by the appearance of different lifetime components within different spectral channels. Another example is Photofrin, a photosensitizer which is approved for bladder cancer and for palliative lung and esophageal cancer in 20 countries, including the United States, Canada and many European countries. Photofrin is a complex mixture of different monomeric and aggregated porphyrins. The phototoxic efficiency during photodynamic therapy (PDT) seems to be correlated with the relative amounts of monomers and aggregates. With SLIM different lifetimes could be attributed to various, spectrally highly overlapping compounds. In addition, a detailed analysis of the autofluorescence by SLIM could explain changes of mitochondrial metabolism during Photofrin-PDT.
Various problems arising during molecular imaging of different fluoroprobes and metabolites used in photodynamic therapy could be circumvented by focusing on time-resolved detection. For this, an interesting new method seems to be time-correlated single photon counting, where a time-to-amplitude converter determines the temporal position and a scanning interface connected to the scanning unit of a laser microscope determines the spatial location of a signal. In combination with spectral resolved detection (spectral lifetime imaging) the set-up achieves the features of highly sophisticated lifetime imaging systems. The photoactive substance on which 5-ALA PDT is based, is protoporphyrine IX which is synthesized in mitochondria. Alternatively, other metabolites from 5-ALA could be involved. Subcellular differentiation of those metabolites without extensive extraction procedures is not trivial, because of highly overlapping spectral properties. Measuring the fluorescence lifetime on a subcellular level could be a successful alternative.
To record lifetime images (τ-mapping) a setup consisting on a laser scanning microscope equipped with detection units for time-correlated single photon counting and ps diode lasers for short-pulsed excitation was implemented. The time-resolved fluorescence characteristics of 5-ALA metabolites were investigated in solution and in cell culture. The lifetimes were best fitted by a biexponential fitting routine. Different lifetimes could be found in different cell compartments. During illumination, the lifetimes decreased significantly. Different metabolites of 5-ALA could be correlated with different fluorescence lifetimes. In addition cells were coincubated with the nuclear staining dye DAPI, in order to investigate the cell cycle. Using appropriate filtering or alternatively spectral lifetime imaging the time-resolved fluorescence of DAPI could be very well distinguished from 5-ALA-metabolites. In contrast to ALA, the lifetime of DAPI, which was best fitted monoexponentially did not change during photobleaching, making this dye a perfect internal standard.
A time-correlated single photon counting (TCSPC) module (SPC-730, Becker & Hickl, Germany) was connected to a laser scanning microscope (Zeiss, Germany) equipped with an ultrafast photomultiplier. Short pulse excitation was achieved with two laser diodes emitting at 398nm and 434nm with a pulse duration of 70ps and 60 ps (PicoQuant, Germany) to allow intracellular fluorescence lifetime imaging (FLIM).
With this setup, fluorescence lifetime of the mitochondrial marker Rhodamine 123 could be studied in solution under the same instrumental conditions as used for fluorescence lifetime imaging of cell monolayers. With the same set of parameters, fluorescence lifetime of Rhodamine 123 was calculated with good reproducibility in mitochondria of living cells.
We present here a comparison of different fitting routines, including a multiexponential fitting based on the method of Laplace transformation. Fluorescence lifetimes calculated with the multiexponential fitting routine proved to be particularly useful to study the distribution of 5-ALA metabolites in cell monolayers.
Irradiation of cell-layers with focussed 2.8 μm ir-laser allows to control the cell temperature from room temperature up to 100°C. Temperatures were calculated for a cell culture model and verified experimentally by thermal mapping of the cell-surrounding medium by means of thermochromic liquid crystals (TLC). Irradiation power and time were varied and associated biological effects like necrosis and apoptosis were observed with respect to the irradiation dosis.
A setup consisting on a laser scanning microscope equipped with appropriate detection units was developed for time-resolved intracellular fluorescence spectroscopy and fluorescence lifetime imaging (FLIM) for online detection of structural changes of various biomolecules. Short-pulsed excitation was performed with a
diode laser which emits pulses at 398 nm with 70 ps duration. The laser was coupled to the laser scanning microscope. For time resolved spectroscopy a setup consisting on a Czerny Turner spectrometer and a MCP-gated and -intensified CCD camera was used. Time-gated spectra within the cells were acquired by placing the laser beam in "spot scan" mode. In addition, a time-correlated single photon counting module (TCSPC) was used to determine the fluorescence lifetime from single spots and to record lifetime images (τ-mapping).
To prove and calibrate the system, the time-resolved fluorescence characteristics of the mitochondrial marker Rhodamine 123 and 5-ALA (5-aminolevulinic-acid), as well as 5-ALAhe (5-aminolevulinic-acidhexylester)- induced protoporphyrine IX (PPIX) were investigated in solution and in cell culture. Different lifetimes could be found in different cell compartiments. During illumination, the lifetimes decreased significantly. From photobleaching experiments different metabolites of 5-ALA could be correlated with different fluorescence lifetimes. In conclusion FLIM, using ps diode lasers and TCSPC techniques is a valuable method to selectively identify and localize various metabolites of fluorescent probes during laser scanning microscopy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.