ESO’s Very Large Telescope Interferometer has a history of record-breaking discoveries in astrophysics and significant advances in instrumentation. The next leap forward is its new visitor instrument, called Asgard. It comprises four natively collaborating instruments: HEIMDALLR, an instrument performing both fringe tracking and stellar interferometry simultaneously with the same optics, operating in the K band; Baldr, a Strehl optimizer in the H band; BIFROST, a spectroscopic combiner to study the formation processes and properties of stellar and planetary systems in the Y-J-H bands; and NOTT, a nulling interferometer dedicated to imaging nearby young planetary systems in the L band. The suite is in its integration phase in Europe and should be shipped to Paranal in 2025. In this article, we present details of the alignment and calibration unit, the observing modes, the integration plan, the software architecture, and the roadmap to completion of the project.
One of the most ambitious goals of modern astronomy is to uncover signs of extraterrestrial biological activity, primarily achieved through spectroscopic analysis of light emitted by exoplanets to identify specific atmospheric molecules. Most exoplanets are indirectly identified through techniques like transit or Doppler shift of the host star's flux. Long-term surveys have yielded statistical insights into the occurrence rates of different planet types based on factors such as radius/mass, orbital period, and the spectral type of the host star. Initial estimates of terrestrial planets within the habitable zone have also emerged. However, the difficulty of detecting light from these exoplanets leaves much unknown about their nature, formation, and evolution. As the number of rocky exoplanets around nearby stars rises, questions about their atmospheric composition, evolutionary trajectory, and habitability increase. Direct measurement of an exoplanet's atmospheric composition through its spectral signature in the infrared can provide answers. Measuring the infrared spectrum of these planets poses significant challenges due to the star/planet contrast and very small angular separation from their host stars. Previous research showed that space-based telescopes are mandatory, and unless large primary mirrors (>30m in diameter) can be sent into space, interferometric techniques become essential. Combining light from distant telescopes with interferometric techniques allows access to information at minimal angular separation, operating within the diffraction limit of individual telescopes. Successful demonstrations of on-ground nulling interferometry open a new era for such space-based missions. They are vital to sidestep and tackle these scientific questions. We recently initiated a new study with the European Space Agency to explore the design parameters and the performances related to an interferometric concept based on a single spacecraft and sparse multiple sub-apertures. Launch constraints are linked to the use of an Ariane 6 launch vehicle. Our parametric study covers a range of 1-4m for the diameter of the telescope and a 10-60m baseline. The most promising concept working in the infrared range (3-20μm) will be highlighted. This study is conducted by TUDelft in cooperation with KULeuven, CSL/ULiège, and Amos with the support of the European Space Agency.
NOTT (formerly Hi-5) is the L’-band (3.5-4.0μm) nulling interferometer of Asgard, an instrument suite in preparation for the VLTI visitor focus. The primary scientific objectives of NOTT include characterizing (i) young planetary systems near the snow line, a critical region for giant planet formation, and (ii) nearby mainsequence stars close to the habitable zone, with a focus on detecting exozodiacal dust that could obscure Earthlike planets. In 2023-2024, the final warm optics have been procured and assembled in a new laboratory at KU Leuven. First fringes and null measurements were obtained using a Gallium Lanthanum Sulfide (GLS) photonic chip that was also tested at cryogenic temperatures. In this paper, we present an overall update of the NOTT project with a particular focus on the cold mechanical design, the first results in the laboratory with the final NOTT warm optics, and the ongoing Asgard integration activities. We also report on other ongoing activities such as the characterization of the photonic chip (GLS, LiNbO3, SiO), the development of the exoplanet science case, the design of the dispersion control module, and the progress with the self-calibration data reduction software.
The Large Interferometer For Exoplanets (LIFE) is a proposed space mission that enables the spectral characterization of the thermal emission of exoplanets in the solar neighborhood. The mission is designed to search for global atmospheric biosignatures on dozens of temperate terrestrial exoplanets and it will naturally investigate the diversity of other worlds. Here, we review the status of the mission concept, discuss the key mission parameters, and outline the trade-offs related to the mission’s architecture. In preparation for an upcoming concept study, we define a mission baseline based on a free-formation flying constellation of a double Bracewell nulling interferometer that consists of 4 collectors and a central beam-combiner spacecraft. The interferometric baselines are between 10–600m, and the estimated diameters of the collectors are at least 2m (but will depend on the total achievable instrument throughput). The spectral required wavelength range is 6–16μm (with a goal of 4–18.5μm), hence cryogenic temperatures are needed both for the collectors and the beam combiners. One of the key challenges is the required deep, stable, and broad-band nulling performance while maintaining a high system throughput for the planet signal. Among many ongoing or needed technology development activities, the demonstration of the measurement principle under cryogenic conditions is fundamentally important for LIFE.
Asgard/NOTT (previously Hi-5) is a European Research Council (ERC)-funded project hosted at KU Leuven and a new visitor instrument for the Very Large Telescope Interferometer (VLTI). Its primary goal is to image the snow line region around young stars using nulling interferometry in the L′-band (3.5 to 4.0) μm, where the contrast between exoplanets and their host stars is advantageous. The breakthrough is the use of a photonic beam combiner, which only recently allowed the required theoretical raw contrast of 10−3 in this spectral range. Nulling interferometry observations of exoplanets also require a high degree of balancing between the four pupils of the VLTI in terms of intensity, phase, and polarization. The injection into the beam combiner and the requirements of nulling interferometry are driving the design of the warm optics and the injection system. The optical design up to the beam combiner is presented. It offers a technical solution to efficiently couple the light from the VLTI into the beam combiner. During the coupling, the objective is to limit throughput losses to 5% of the best expected efficiency for the injection. To achieve this, a list of different loss sources is considered with their respective impact on the injection efficiency. Solutions are also proposed to meet the requirements of beam balancing for intensity, phase, and polarization. The different properties of the design are listed, including the optics used, their alignment and tolerances, and their impact on the instrumental performances in terms of throughput and null depth. The performance evaluation gives an expected throughput loss <6.4% of the best efficiency for the injection and a null depth of ∼2.10−3, mainly from optical path delay errors outside the scope of this work.
European Southern Observatory (ESO)’s Very Large Telescope Interferometer (VLTI), Paranal, Chile, is one of the most proficient observatories in the world for high angular resolution astronomy. It has hosted several interferometric instruments operating in various bandwidths in the infrared. As a result, the VLTI has yielded countless discoveries and technological breakthroughs. We propose to ESO a new concept for a visitor instrument for the VLTI: Asgard. It is an instrumental suite comprised of four natively collaborating instruments: High-Efficiency Multiaxial Do-it ALL Recombiner (HEIMDALLR), an all-in-one instrument performing both fringe tracking and stellar interferometry with the same optics; Baldr, a Strehl optimizer; Beam-combination Instrument for studying the Formation and fundamental paRameters of Stars and planeTary systems (BIFROST), a combiner whose main science case is studying the formation processes and properties of stellar and planetary systems; and Nulling Observations of dusT and planeTs (NOTT), a nulling interferometer dedicated to imaging young nearby planetary systems in the L band. The overlap between the science cases across different spectral bands yields the idea of making the instruments complementary to deliver sensitivity and accuracy from the J to L bands. Asgard is to be set on the former AMBER optical table. Its control architecture is a hybrid between custom and ESO-compliant developments to benefit from the flexibility offered to a visitor instrument and foresee a deeper long-term integration into VLTI for an opening to the community.
Hi-5 is the L’-band (3.5-4.0 μm) high-contrast imager of Asgard, an instrument suite in preparation for the visitor focus of the VLTI. The system is optimized for high-contrast and high-sensitivity imaging within the diffraction limit of a single UT/AT telescope. It is designed as a double-Bracewell nulling instrument producing spectrally-dispersed (R=20, 400, or 2000) complementary nulling outputs and simultaneous photometric outputs for self-calibration purposes. In this paper, we present an update of the project with a particular focus on the overall architecture, opto-mechanical design of the warm and cold optics, injection system, and development of the photonic beam combiner. The key science projects are to survey (i) nearby young planetary systems near the snow line, where most giant planets are expected to be formed, and (2) nearby main sequence stars near the habitable zone where exozodiacal dust that may hinder the detection of Earth-like planets. We present an update of the expected instrumental performance based on full end-to-end simulations using the new GRAVITY+ specifications of the VLTI and the latest planet formation models.
The Very Large Telescope Interferometer is one of the most proficient observatories in the world for high angular resolution. Since its first observations, it has hosted several interferometric instruments operating in various bandwidths in the infrared. As a result, the VLTI yields countless discoveries and technological breakthroughs. We introduce to the VLTI the new concept of Asgard: an instrumental suite including four natively collaborating instruments: BIFROST, a stellar interferometer dedicated to the study of the formation of multiple systems; Hi- 5, a nulling interferometer dedicated to imaging young nearby planetary systems in the M band; HEIMDALLR, an all-in-one instrument performing both fringe tracking and stellar interferometry with the same optics; Baldr, a fibre-injection optimiser. These instruments share common goals and technologies. Thus, the idea of this suite is to make the instruments interoperable and complementary to deliver unprecedented sensitivity and accuracy from J to M bands. The interoperability of the Asgard instruments and their integration in the VLTI are the main challenges of this project. In this paper, we introduce the overall optical design of the Asgard suite, the different modules, and the main challenges ahead.
Hi-5 is an ERC-funded project hosted at KU Leuven and a proposed visitor instrument for the VLTI. Its primary goal is to image the snow line region around young planetary systems using nulling interferometry in the L’ band, between 3.5 and 4.1 μm, where the contrast between exoplanets and their host stars is very advantageous. The breakthrough is the use of a photonic chip based beam combiner, which only recently allowed the required theoretical raw contrast of 10−3 in this spectral range. The VLTI long baseline interferometry enables to reach high angular resolution (4.2 mas at 3.8 μm wavelength with the Auxiliary Telescopes (ATs)), while high contrast detection is achieved using nulling interferometry. This polarisation requires a high degree of optical symmetry between the four pupils of the VLTI, only possible with precise phase, dispersion and intensity control systems. The instrument is currently in its design phase. In this paper, the warm optics design and the injection system up to the photonic chip are presented. The different properties of the design are presented including the optics used, the characteristics of the four beams and the current drawbacks. Particular attention is devoted to the optical alignment and the tolerance analysis in order to estimate the precision required for the alignment procedure and therefore to choose adapted optical mountings.
Hi-5 is a proposed L' band high-contrast nulling interferometric instrument for the visitor focus of the Very Large Telescope Interferometer (VLTI). As a part of the ERC consolidator project called SCIFY (Self-Calibrated Interferometry For exoplanet spectroscopY), the instrument aims to achieve sufficient dynamic range and angular resolution to directly image and characterize the snow line of young extra-solar planetary systems. The spectrometer is based on a dispersive grism and is located downstream of an integrated optics beam-combiner. To reach the contrast and sensitivity specifications, the outputs of the I/O chip must be sufficiently separated and properly sampled on the Hawaii-2RG detector. This has many implications for the photonic chip and spectrometer design. We present these technical requirements, trade-off studies, and phase-A of the optical design of the Hi-5 spectrometer in this paper. For both science and contract-driven reasons, the instrument design currently features three different spectroscopic modes (R=20, 400, and 2000). Designs and efficiency estimates for the grisms are also presented as well as the strategy to separate the two polarization states.
A small-footprint 4-telescope photonic beam combiner is at the heart of the Hi-5 instrument, the high-contrast VLTI visitor instrument focusing on the detection and characterization of young exoplanets in the mid-infrared L’ band. Hi-5 implements the technique of nulling interferometry to efficiently suppress the strong stellar radiation of the central source and enhance the detection of the nearby faint planetary signal. Based on the “Double Bracewell” architecture, the photonic nulling beam combiner is designed around three cascaded achromatic directional couplers with 50/50 coupling ratios. This allows the nulled signals of the first two couplers to be cross-combined with a third central combiner, which produces two conjugated asymmetric transmission maps projected onto the sky. Each individual telescope beam passes first through a side-step to suppress uncoupled stray-light. The corresponding flux is then sampled by an asymmetric Y-junction to provide a simultaneous photometric channel for the estimation of the self-calibrated nulls. We report here on the prototyping phase of the Hi-5 4-telescope photonic beam combiner that is manufactured by ultrafast laser inscription in a Gallium-Lanthanum-Sulphide (GLS) glass substrate, which exhibits high transparency in the L’ band of interest. Using our 2-beam spectro-interferometric lab bench, we measure the throughput of the beam combiners, the chromatic and broadband coupling ratios in the 3.6-3.9 μm range for the couplers and the Y-junctions, as well as the broadband interferometric properties of these 4-telescope mid-infrared photonic beam combiners.
This conference presentation was prepared for the Optical and Infrared Interferometry and Imaging VIII conference at SPIE Astronomical Telescopes + Instrumentation, 2022.
One of the main goals of exoplanet science is to characterize the atmosphere of rocky exoplanets in the habitable zone of nearby stars. A space-based nulling interferometry, observing in the mid-infrared (3-20 μm), is considered to be one of the most promising solutions to tackle this observing challenge. The LIFE project, a free-flying spacebased mid-infrared nulling interferometer, would have this capability. However, several key technologies need to be demonstrated before launching such an ambitious mission. A small space-based mission can be considered as a useful prerequisite. In this paper, we consider three small satellite architectures, two CubeSats, and a PROBA-like satellite. Based on a Bracewell architecture and without free-flying, these monolithic satellites can demonstrate some key components like the null capability and its stability on real targets. The achromatic phase shifter needs also to be demonstrated in space. Based on the scientific capabilities and exoplanet detection yield of these architectures, optical constraints are derived (pointing stability, and optical path difference correction). Orbital simulations, exploring a range of classical orbits for such a satellite, are also discussed.
High-contrast optical stellar interferometry generally refers to instruments able to detect circumstellar emission at least a few hundred times fainter than the host star at high-angular resolution (typically within a few λ/D). While such contrast levels have been enabled by classical modal-filtered interferometric instruments such as VLTI/PIONIER, CHARA/FLUOR, and CHARA/MIRC the development of instruments able to filter out the stellar light has significantly pushed this limit, either by nulling interferometry for on-axis observations (e.g., PFN, LBTI, GLINT) or by off-axis classical interferometry with VLTI/GRAVITY. Achieving such high contrast levels at small angular separation was made possible thanks to significant developments in technology (e.g., adaptive optics, integrated optics), data acquisition (e.g., fringe tracking, phase chopping), and data reduction techniques (e.g., nulling self-calibration). In this paper, we review the current status of high-contrast optical stellar interferometry and present its key scientific results. We then present ongoing activities to improve current ground-based interferometric facilities for high-contrast imaging (e.g., Hi-5/VIKING/BIFROST of the ASGARD instrument suite, GRAVITY+) and the scientific milestones that they would be able to achieve. Finally, we discuss the long-term future of high-contrast stellar interferometry and, in particular, ambitious science cases that would be enabled by space interferometry (e.g., LIFE, space-PFI) and large-scale ground-based projects (PFI).
Nulling interferometry is considered as one of the most promising solutions to spectrally characterize rocky exoplanets in the habitable zone of nearby stars. It provides both high angular resolution and starlight mitigation. It requires however several technologies that need to be demonstrated before a large interferometry space-based mission flies. A small-sat mission is a good technological precursor. Based on a Bracewell architecture, this unique satellite can demonstrate some key components (null capability, fiber injection, achromatic phase shifter). Scientific capabilities of such a mission are presented. An exoplanet detection yield is derived, and we show that the detection of exoplanets around nearby stars is feasible.
Space-based nulling interferometry is one of the most promising solutions to spectrally characterize the atmosphere of rocky exoplanets in the mid-infrared (3 to 20 μm). It provides both high angular resolution and starlight mitigation. This observing capability depends on several technologies. A CubeSat (up to 20 kg) or a medium satellite (up to a few hundreds of kg), using a Bracewell architecture on a single spacecraft could be an adequate technological precursor to a larger, flagship mission. Beyond technical challenges, the scientific return of such a small-scale mission needs to be assessed. We explore the exoplanet science cases for various missions (several satellite configurations and sizes). Based on physical parameters (diameter and wavelength) and thanks to a state-of-the-art planet population synthesis tool, the performance and the possible exoplanet detection yield of these configurations are presented. Without considering platform stability constraints, a CubeSat (baseline of b ≃ 1 m and pupils diameter of D ≃ 0.1 m) could detect ≃7 Jovian exoplanets, a small satellite (b ≃ 5 m / D ≃ 0.25 m) ≃120 exoplanets, whereas a medium satellite (b ≃ 12.5 m / D ≃ 0.5 m) could detect ∼250 exoplanets including 51 rocky planets within 20 pc. To complete our study, an analysis of the platform stability constraints (tip/tilt and optical path difference) is performed. Exoplanet studies impose very stringent requirements on both tip/tilt and OPD control.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.