Overview of progress in construction and testing of the laser systems of ELI-Beamlines, accomplished since 2015, is presented. Good progress has been achieved in construction of all four lasers based largely on the technology of diode-pumped solid state lasers (DPSSL). The first part of the L1 laser, designed to provide 200 mJ <15 fs pulses at 1 kHz repetition rate, is up and running. The L2 is a development line employing a 10 J / 10 Hz cryogenic gas-cooled pump laser which has recently been equipped with an advanced cryogenic engine. Operation of the L3-HAPLS system, using a gas-cooled DPSSL pump laser and a Ti:sapphire broadband amplifier, was recently demonstrated at 16 J / 28 fs, at 3.33 Hz rep rate. Finally, the 5 Hz OPCPA front end of the L4 kJ laser is up running and amplification in the Nd:glass large-aperture power amplifiers was demonstrated.
B. Rus, P. Bakule, D. Kramer, J. Naylon, J. Thoma, J. Green, R. Antipenkov, M. Fibrich, J. Novák, F. Batysta, T. Mazanec, M. Drouin, K. Kasl, R. Baše, D. Peceli, L. Koubíková, P. Trojek, R. Boge, J. Lagron, Š. Vyhlídka, J. Weiss, J, Cupal, J. Hřebíček, P. Hříbek, M. Durák, J. Polan, M. Košelja, G. Korn, M. Horáček, J. Horáček, B. Himmel, T. Havlíček, A. Honsa, P. Korouš, M. Laub, C. Haefner, A. Bayramian, T. Spinka, C. Marshall, G. Johnson, S. Telford, J. Horner, B. Deri, T. Metzger, M. Schultze, P. Mason, K. Ertel, A. Lintern, J. Greenhalgh, C. Edwards, C. Hernandez-Gomez, J. Collier, T, Ditmire, E. Gaul, M. Martinez, C. Frederickson, D. Hammond, C. Malato, W. White, J. Houžvička
Overview of the laser systems being built for ELI-Beamlines is presented. The facility will make available high-brightness multi-TW ultrashort laser pulses at kHz repetition rate, PW 10 Hz repetition rate pulses, and kilojoule nanosecond pulses for generation of 10 PW peak power. The lasers will extensively employ the emerging technology of diode-pumped solid-state lasers (DPSSL) to pump OPCPA and Ti:sapphire broadband amplifiers. These systems will provide the user community with cutting-edge laser resources for programmatic research in generation and applications of high-intensity X-ray sources, in particle acceleration, and in dense-plasma and high-field physics.
The emergence of commercially available diode pumped solid state lasers in the 3-10 watt power range has created alternative laser sources for many light industrial applications. Laser marking, micro-machining, resistor trimming, disk texturing, and rapid prototyping are some of the applications which can benefit from this technology. In this paper, we describe fiber-coupled diode bar pumped Nd:YAG and Nd:YVO4 lasers with short pulse, high energy, and relatively high average power developed for these applications. Our design emphasizes system efficiency and simplicity to minimize the cost of ownership. The excellent beam spatial quality and pulse-to-pulse stability of these devices results in improved process yields for the end user.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.