The recent discovery of high electromechanical performance in high-energy electron irradiated P(VDF-TrFE) copolymers opens a new avenue for developing high performance electroactive polymers. From basic materials consideration, it is expected that one can achieve high electromechanical performance by means of nonirradiation approach, such as introducing ter-monomer to form PVDF based terpolymer. The basic requirement for the ter-monomer is discussed in order to achieve a high electromechanical performance in P(VDF-TrFE) based terpolymer. Based on the conclusion, P(VDF-TrFE-CFE) terpolymer has been synthesized and the experimental results indicate that the terpolymer exhibits better electromechanical performance compared with irradiated copolymers. For example, both the electric induced strain and Young's modulus in P(VDF-TrFE-CFE) terpolymer could be higher than that in irradiated copolymers. X-ray diffraction, DSC and FTIR were employed to determine the structure and molecule conformation. Furthermore, a serious theoretical simulation was carried out for P(VDF-TrFE) based terpolymers with different ter-monomers. The results show that indeed the terpolymer with CFE favors gauche conformation, consistent with the experimental results.
Conference Committee Involvement (2)
Organic Photovoltaics XVI
11 August 2015 | San Diego, California, United States
Organic Photovoltaics XV
19 August 2014 | San Diego, California, United States
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.