An increasing number of integrated photonic solutions find applications in the fields of biomedicine, manufacture, quantum computation and telecommunications. Size mismatch between optical fibers, light sources, photodetectors and photonic waveguides is usually significant, typically with the former having cross-sections on the orders of hundreds of micrometers or more and the latter a few micrometers or hundreds of nanometers. Efficiency in coupling light to and from photonic integrated circuits is an extremely important parameter since it influences device’s performance, affecting signal-to-noise ratio. Several approaches exist for light coupling, such as off-plane coupling with the assistance of grating couplers, on-plane/edge coupling with or without the assistance of tapers and adiabatic coupling. In this study we focus on grating couplers designed in amorphous silicon-on-insulator (SOI) platforms. Grating couplers are compact, can be tested at wafer-level, and do not require application specific fiber terminations, such as lenses and/or tapers. Two approaches in the optimization of grating couplers were explored, one based on a lithographic mask defined by the superposition of two different grating patterns, with different periods, having an offset to provide a random distribution of grating elements, and a technique based on the quadratic variation of the refractive index of the grating structure along its length. Results were obtained from 2D-FDTD simulations. Coupling efficiencies for the quasi-TE mode over -13 dB and -3 dB were obtained for the random and quadratic variations of the effective refractive index at a wavelength of 1550 nm, without bottom reflectors.
While silicon photonics is considered as the key technology for future applications in optical transceivers, ASICs and sensing devices, there are still challenges to achieve generalized mass production of Photonic Integrated Circuits (PICs). One obstacle is the required extreme miniaturization of the photonic devices. Nevertheless, there is space for applications with equal interest and impact in the society that do not require the extreme performance associated with PICs built on a tenth of nanometer scale. Low-cost PICs can be obtained by increasing the size of the waveguides and devices to a multi-micron scale and in this case the machinery necessary for the device fabrication can be greatly simplified. The transfer of the amorphous silicon (a-Si:H) production technology developed in the past for the photovoltaic and flat panel displays can be adapted to the production of multi-micron size PICs targeting low-cost devices working with low frequency signals. To enable the use of such devices it is important to show that light and be coupled in and out of the waveguides efficiently without the need for diffraction gratings or other components that require sub-micron fabrication resolutions. In this article we perform simulation of the power transfer between a lensed 19.4 µm multimode optical fiber and a multi-micron a-Si:H rib waveguide, designed to support single-mode propagation. Light coupling efficiency is analyzed as a function of alignment and distance variations using the FDTD and the Beam Propagation methods. Results show a fundamental TM mode overlap over 80 % under optimal alignment conditions.
Optical power splitters are widely used in many applications and different typologies have been developed for devices dedicated to this function. Among them, the multimode interference design is especially attractive for its simplicity and performance making it a strong candidate for low-cost applications, such as photonics lab-on-chips for biomedical point of care systems. Within this context, splitting the optical beam equally into multiple channels is of fundamental importance to provide reference arms, parallel sensing of different biomarkers and allowing multiplexed reading schemes. From a theoretical point of view, the multimode structure allows implementation of the power splitting function for an arbitrary number of channels, but in practice its performance is limited by lithographic mask imperfections and waveguide width. In this work we analyze multimode waveguide structures, based on amorphous silicon (a-Si:H) over insulator (SiO2), which can be produced by the PECVD deposition technique. The study compares the performance of several 1 to N designs optimized to provide division of the fundamental quasi-TM mode as a function of input polarization and lithographic roughness. The performance is analyzed in terms of output power uniformity and attenuation and is based on numerical simulations using the Beam Propagation Method and Eigenmode Expansion Propagation Methods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.