Each year in the U.S., 7.4 million surgical procedures involving the major vessels are performed. Many of our patients require multiple surgeries, and many of the procedures include “surgical exploration”. Procedures of this kind come with a significant amount of risk, carrying up to a 17.4% predicted mortality rate. This is especially concerning for our target population of pediatric patients with congenital abnormalities of the heart and major pulmonary vessels. This paper offers a novel approach to surgical planning which includes studying virtual and physical models of pulmonary vasculature of an individual patient before operation obtained from conventional 3D X-ray computed tomography (CT) scans of the chest. These models would provide clinicians with a non-invasive, intricately detailed representation of patient anatomy, and could reduce the need for invasive planning procedures such as exploratory surgery. Researchers involved in the AirPROM project have already demonstrated the utility of virtual and physical models in treatment planning of the airways of the chest. Clinicians have acknowledged the potential benefit from such a technology. A method for creating patient-derived physical models is demonstrated on pulmonary vasculature extracted from a CT scan with contrast of an adult human. Using a modified version of the NIH ImageJ program, a series of image processing functions are used to extract and mathematically reconstruct the vasculature tree structures of interest. An auto-generated STL file is sent to a 3D printer to create a physical model of the major pulmonary vasculature generated from 3D CT scans of patients.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.