We present a methodology to distinguish between absorptive and scattering losses in SiN optical waveguide resonators by measuring the thermo-optic redshift in resonant wavelength and deducing absorption losses using thermal properties determined through the differential 3ω method. This information offers researchers valuable insights for improving device performance and optimizing fabrication processes. We demonstrate results on the effect of a 650oC thermal anneal on R=120um whispering-gallery mode microring resonators fabricated using N-rich PECVD SiN with n=1.92 at 800nm, which reduced total losses from 1.4dB/cm to 0.64dB/cm at 780nm and yielded an intrinsic-Q of 1.1 million, due primarily to decreased absorption losses.
We report on the design and performance of single-frequency VCSELs that are electro-optically tunable in the 852nm wavelength range. Electro-optic tuning of the index of refraction is achieved by changing the reverse-bias electric field in a secondary p-i-n junction that contains coupled quantum wells. The electro-optic tuning is enhanced by putting the index-tuning region in a secondary cavity of a dual-cavity VCSEL. Electro-optic tuning can achieve 1nm of wavelength tuning without changing laser power and can operate at modulation frequencies up to 1GHz.
We report on the use of etching and regrowth to shift the longitudinal resonance wavelength of adjacent VCSELs by -4nm from 980nm. The etched VCSEL exhibited less than 5% change in threshold (from 0.36mA) and slope efficiency relative to neighboring un-etched VCSELs. This etch and regrowth technique can be applied to produce wavelength-division multiplexed (WDM) VCSEL arrays with close spacing (<100microns). We will also discuss applications to 2-dimensional index engineering of novel VCSEL devices, since wavelength shifting is equivalent to effective index tuning.
We have fabricated 3D printed micro-optics to feedback light into an 850-nm VCSEL with reduced top-mirror reflectivity and control its transverse modes. Our goal is to create a single-frequency VCSEL with output power on the order of 10 mW for use in atomic and quantum physics. Feedback of 50% can reduce threshold current 5-fold and preferentially select the fundamental transverse mode. We will compare theory and experiment for micro-optic length scales near 100 microns, yielding Gaussian mode diameters near 10 microns.
We report on the design and characterization of multi-mirror vertical-cavity surface-emitting lasers (VCSELs) that achieve linewidths less than 2 MHz. We have fabricated all-semiconductor multi-mirror VCSELs at 850 nm that operate in a single mode and are suitable for high-resolution spectroscopy. Cold-cavity linewidth measurements confirm increased quality factors relative to standard VCSEL resonators. Frequency noise power spectral density measurements exhibit 1/f noise and white-noise floors consistent with Lorentzian linewidths less than 2 MHz.
We report on mode selection and tuning properties of vertical-external-cavity surface-emitting lasers (VECSELs) containing coupled semiconductor and external cavities of total length less than 1 mm. Our goal is to create narrowlinewidth (<1MHz) single-frequency VECSELs that operate near 850 nm on a single longitudinal cavity resonance and tune versus temperature without mode hops. We have designed, fabricated, and measured VECSELs with external-cavity lengths ranging from 25 to 800 μm. We compare simulated and measured coupled-cavity mode frequencies and discuss criteria for single mode selection.
We report on the development of single-frequency VCSELs (vertical-cavity surface-emitting lasers) for sensing the position of a moving MEMS (micro-electro-mechanical system) object with resolution much less than 1nm. Position measurement is the basis of many different types of MEMS sensors, including accelerometers, gyroscopes, and pressure sensors. Typically, by switching from a traditional capacitive electronic readout to an interferometric optical readout, the resolution can be improved by an order of magnitude with a corresponding improvement in MEMS sensor performance. Because the VCSEL wavelength determines the scale of the position measurement, laser wavelength (frequency) stability is desirable. This paper discusses the impact of VCSEL amplitude and frequency noise on the position measurement.
We report on the development of 850-nm high-speed VCSELs optimized for low-power data transmission at cryogenic
temperatures near 100 K. These VCSELs operate on the n=1 quantum well transition at cryogenic temperatures (near
100 K) and on the n=2 transition at room temperature (near 300 K) such that cryogenic cooling is not required for initial
testing of the optical interconnects at room temperature. Relative to previous work at 950 nm, the shorter 850-nm
wavelength of these VCSELs makes them compatible with high-speed receivers that employ GaAs photodiodes.
We are developing a highly miniaturized trapped ion clock to probe the 12.6 GHz hyperfine transition in the
171Yb+ ion. The clock development is being funded by the Integrated Micro Primary Atomic Clock
Technology (IMPACT) program from DARPA where the stated goals are to develop a clock that consumes
50 mW of power, has a size of 5 cm3, and has a long-term frequency stability of 10-14 at one month. One of
the significant challenges will be to develop miniature single-frequency lasers at 369 nm and 935 nm and the
optical systems to deliver light to the ions and to collect ion fluorescence on a detector.
We have been investigating the use of coaxial multimode VCSEL/PD (vertical cavity surface emitting laser/photodiode)
pairs for positional sensing with emitter to target mirror distances on the order of 1mm. We have observed large
variations in signal levels due to the strong optical feedback in these close-coupled systems, employing either
heterogeneously integrated commercial components or our own monolithically integrated devices. The feedback effect
is larger than anticipated due to the annular geometry of the photodetector. Even though there is very little change in
the measured VCSEL total output power, the optical feedback induces variations in the transverse mode distributions in
these multimode VCSELs. The higher order modes have a larger divergence angle resulting in changes in the reflected
light power incident upon the active detector area for a large range of emitter/mirror separations. We will review the
experimental details and provide strategies for avoiding these variations in detected power.
We report the demonstration of a fully micro-fabricated vertical-external-cavity surface-emitting laser (VECSEL)
operating at wavelengths near 850 nm. The external-cavity length is on the order of 25 microns, and the external mirror
is a dielectric distributed Bragg reflector with a radius of curvature of 130 microns that is micro-fabricated on top of the
active semiconductor portion of the device. The additional cavity length, relative to a VCSEL, enables higher output
power and narrower laser linewidth, and micro-fabrication of the external mirror preserves the manufacturing cost
advantages of parallel lithographic alignment.
We designed and fabricated an optical system containing high efficiency diffractive optical elements (DOEs)
with large numerical apertures (NA) for an all-optical gate, based on a Symmetric Self-Electro-Optic Effect
Device (S-SEED) technology. The S-SEEDs are the active elements that perform the optical switching in the
optical interconnect. Multiple, off-axis DOEs are used to collect and focus light onto the S-SEEDs and the
Input/Output optical fibers. Each S-SEED has at least seven input signals, two alignment signals, and two
output signals. Each signal uses a DOE. DOE fabrication is relatively mature and utilizes the precise lateral
alignment inherent in photolithography to produce arrays compatible with dense optical interconnects.
Losses across the system have a negative impact on the S-SEED switching speeds. The primary challenge of
DOEs is the diffractive optic efficiency that corresponds to high NAs. Lower efficiencies, due to
requirements for large deflection angles, lead to extremely small feature sizes in the outer zones of the DOEs.
We optimize DOE efficiency with modifications to the blaze geometry and by selecting the appropriate
number of levels for specific deflection angles. The system layout is modified to reduce complexity by
working in collimated space between the S-SEEDs instead of imaging onto relay mirrors. This reduces the
spatial frequency of the DOEs and increases system tolerance by not imaging mirror defects. Finally, we
quantify the effects of lithographic masks misalignment and look at the step geometry deviations and their
effects on DOE efficiency.
A future generation of high-performance low-power atomic systems is expected to require VCSEL linewidths below 10
MHz for compatibility with the natural atomic linewidth (5 MHz for cesium) that is realized with atomic beams, trapped
atoms, and trapped ions. This paper describes initial efforts at Sandia to reduce VCSEL linewidth by increasing the
effective cavity length of an 850-nm monolithic VCSEL. In particular, two aspects of VCSEL design will be discussed:
the Q of the VCSEL cavity, and the linewidth enhancement factor of the active region material. We report a factor of
two linewidth reduction, from 50 MHz for our standard oxide-aperture VCSEL to 23 MHz for an extended-cavity
VCSEL.
This paper describes technologies developed at Sandia National Laboratories to support a joint DoD/DoE initiative to create a compact, robust, and affordable photonic proximity sensor for munitions fuzing. The proximity fuze employs high-power vertical-cavity surface-emitting laser (VCSEL) arrays, resonant-cavity photodetectors (RCPDs), and refractive micro-optics that are integrated within a microsensor whose volume is approximately 0.01 cm3. Successful development and integration of these custom photonic components should enable a g-hard photonic proximity fuze that replaces costly assemblies of discrete lasers, photodetectors, and bulk optics. Additional applications of this technology include void sensing, ladar and short-range 3-D imaging.
A new generation of small low-power atomic sensors, including clocks, magnetometers, and gyroscopes, is being
developed based on recently available MEMS and VCSEL technologies. These sensors rely on spectroscopic
interrogation of alkali atoms, typically rubidium or cesium, contained in small vapor cells. The relevant spectroscopic
wavelengths (in vacuum) are 894.6 nm (D1) and 852.3 nm (D2) for cesium, and 795.0 nm (D1) and 780.2 nm (D2) for
rubidium. The D1 wavelengths are either preferred or required, depending on the application, and vertical-cavity
surface-emitting lasers (VCSELs) are preferred optical sources because of their low power consumption and circular
output beam.
This paper describes the required VCSEL characteristics for atomic clocks and magnetometers. The fundamental
VCSEL requirement is single-frequency output with tunability to the particular spectroscopic line of interest. Single-polarization
and single-transverse-mode operation are implicit requirements. VCSEL amplitude noise and frequency
noise are also important because they contribute significantly to the sensor signal-to-noise ratio. Additional desired
VCSEL attributes are low cost, low power consumption, and several years of continuous operating lifetime.
This paper also describes the 894-nm VCSELs that we have developed for cesium-based atomic sensors. In particular,
we discuss VCSEL noise measurements and accelerated lifetime testing. Finally, we report the performance of
prototype atomic clocks employing VCSELs.
Optical time-domain reflectometry (OTDR) is an effective technique for locating faults in fiber communication links.
The fact that most OTDR measurements are performed manually is a significant drawback, because it makes them too
costly for use in many short-distance networks and too slow for use in military avionic platforms. Here we describe and
demonstrate an automated, low-cost, real-time approach to fault monitoring that can be achieved by integrating OTDR
functionality directly into VCSEL-based transceivers. This built-in test capability is straightforward to implement and
relevant to both multimode and single mode networks.
In-situ OTDR uses the transmitter VCSEL already present in data transceivers. Fault monitoring is performed by
emitting a brief optical pulse into the fiber and then turning the VCSEL off. If a fault exists, a portion of the optical
pulse returns to the transceiver after a time equal to the round-trip delay through the fiber. In multimode OTDR, the
signal is detected by an integrated photodetector, while in single mode OTDR the VCSEL itself can be used as a
detector. Modified driver electronics perform the measurement and analysis.
We demonstrate that VCSEL-based OTDR has sufficient sensitivity to determine the location of most faults commonly
seen in short-haul networks (i.e., the Fresnel reflections from improperly terminated fibers and scattering from
raggedly-broken fibers). Results are described for single mode and multimode experiments, at both 850 nm and 1.3 μm.
We discuss the resolution and sensitivity that have been achieved, as well as expected limitations for this novel
approach to network monitoring.
The spectroscopic technique of coherent population trapping (CPT) enables an all-optical interrogation of the groundstate
hyperfine splitting of cesium (or rubidium), compared to the optical-microwave double resonance technique
conventionally employed in atomic frequency standards. All-optical interrogation enables the reduction of the size and
power consumption of an atomic clock by two orders of magnitude, and vertical-cavity surface-emitting lasers
(VCSELs) are preferred optical sources due to their low power consumption and circular output beam. Several research
teams are currently using VCSELs for DARPA's chip-scale atomic clock (CSAC) program with the goal of producing
an atomic clock having a volume < 1 cm^3, a power consumption < 30 mW, and an instability (Allan deviation) <
1x10^-11 during a 1-hour averaging interval.
This paper describes the VCSEL requirements for CPT-based atomic clocks, which include single mode operation,
single polarization operation, modulation bandwidth > 4 GHz, low power consumption (for the CSAC), narrow
linewidth, and low relative intensity noise (RIN). A significant manufacturing challenge is to reproducibly obtain the
required wavelength at the specified VCSEL operating temperature and drive current. Data are presented that show the
advantage of operating at the D1 (rather than D2) resonance of the alkali atoms. Measurements of VCSEL linewidth
will be discussed in particular, since atomic clock performance is especially sensitive to this parameter.
This paper describes the photonic component development taking place at Sandia National Laboratories, ARDEC and the Army Research Laboratory in support of an effort to develop a robust, compact, and affordable photonic proximity sensor for munitions fuzing applications. Successful implementation of this sensor will provide a new capability for direct fire applications. The technologies under investigation for the optical fuze design covered in this paper are vertical-cavity surface-emitting lasers (VCSELs), vertical-external-cavity surface-emitting lasers (VECSELs), integrated resonant-cavity photodetectors (RCPDs), and refractive micro-optics. The culmination of this work will be low cost, robust, fully integrated, g-hardened components suitable for proximity fuzing applications. The use of advanced photonic components will enable replacement of costly assemblies that employ discrete lasers, photodetectors, and bulk optics. The integrated devices will be mass produced and impart huge savings for a variety of Army applications. The specific application under investigation is for gun-fired munitions. Nevertheless, numerous civilian uses exist for this proximity sensor in automotive, robotics and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.
Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission is employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.
Vertical-cavity surface-emitting lasers (VCSELs) are uniquely suited for massively parallel interconnects and scannerless imaging applications due to their small size, high efficiency and amiability to formation of high-density 2-dimensional arrays. We have successfully fabricated 4096 element arrays (64×64) containing alternating rows of selectively-oxidized 850 nm VCSELs and resonant-cavity photodetectors (RCPDs) on a 55 micron pitch monolithically integrated on semi-insulating GaAs substrates. We employ a matrix addressable architecture to reduce the input and output electrical connections to the array, where all the VCSELs (or RCPDs) in each row are connected by a common metal trace at the base of their mesas. The columns are connected by metal traces that bridge from mesa top to mesa top, connecting every other row (i.e., only VCSELs or only RCPDs). The design, fabrication and performance of these arrays is discussed.
Improvements in the performance of InGaAsN quantum well VCSELs operating near 1300 nm are reported. The effects of alloy composition on the photoluminescence intensity, linewidth, and anneal-induced wavelength blueshift of molecular beam epitaxial InGaAsN quantum wells are detailed. VCSELs employing a conventional p-n diode structure are demonstrated and compared to devices using two n-type DBR mirrors and an internal tunnel diode. Room-temperature differential efficiencies as high as 0.24 W/A, output powers of 2.1 mW, and a maximum CW operating temperature as high as 105 degree(s)C have all been demonstrated in these devices.
Vertical-cavity surface-emitting lasers (VCSELs) are uniquely suited for applications requiring high-density 2-dimensional arrays of lasers, such as massively parallel interconnects or imaging applications. We have successfully fabricated 64x64 arrays containing alternating rows of selectively-oxidized 850 nm VCSELs and resonant-cavity photodetectors (RCPDs) on semi-insulating GaAs. In order to reduce the input/output pin count, we employed a matrix addressable architecture, where all the VCSELs (or RCPDs) in each row are connected by a common metal trace at the base of their mesas. The columns are connected by metal traces that bridge from mesa top to mesa top, connecting every other row (i.e., only VCSELs or only RCPDs). The pitch of devices in the array is 55 microns, and total resistance contributed by the long (up to 3.5 mm) row and column traces is below 50 ohms. The epitaxial design, fabrication and performance of these arrays is discussed.
Optocouplers are used for a variety of applications aboard spacecraft including electrical isolation, switching and power transfer. Commercially available light emitting diode- based optocouplers have experienced severe degradation of light output due to extensive displacement during damage occurring in the semiconductor lattice caused by energetic proton bombardment. A new optocoupler has been designed and fabricated which utilizes vertical cavity surface emitting laser (VCSEL) and resonant cavity photodetector (RCPD) technologies for the optocoupler emitter and detector, respectively. Linear arrays of selectively oxidized GaAs/AlGaAs VCSELs and RCPDs, each designed to operate at a wavelength of 850 nm, were fabricated using an airbridge contacting scheme. The airbridged contacts were designed to improve packaging yields and device reliability by eliminating the use of a polyimide planarizing layer which provided poor adhesion to the bond pad metallization. Details of the airbridged optocoupler fabrication process are reported. Discrete VCSEL and RCPD devices were characterized at temperatures between -100 degree(s)C to 100 degree(s)C. Devices were packaged in a face-to-face configuration to form a single channel optocoupler and its performance was evaluated under conditions of high-energy proton bombardment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.