KEYWORDS: Camera shutters, James Webb Space Telescope, Observatories, Target acquisition, Space operations, Astronomical spectroscopy, Near infrared spectroscopy, Microelectromechanical systems, Astronomical instrumentation, Astronomical spectrometers
The Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope affords the astronomical community an unprecedented space-based Multi-Object Spectroscopy (MOS) capability through the use of a programmable array of micro-electro-mechanical shutters. Launched in December 2021 and commissioned along with a suite of other observatory instruments throughout the first half of 2022, NIRSpec has been carrying out scientific observations since the completion of commissioning. These observations would not be possible without a rigorous program of engineering operations to actively monitor and maintain NIRSpec’s hardware health and safety and enhance instrument efficiency and performance. Although MOS is only one of the observing modes available to users, the complexity and uniqueness of the Micro-Shutter Assembly (MSA) that enables it has presented a variety of engineering challenges, including the appearance of electrical shorts that produce contaminating glow in exposures. Despite these challenges, the NIRSpec Multi-Object Spectrograph continues to perform robustly with no discernible degradation or significant reduction in capability. This paper provides an overview of the NIRSpec micro-shutter subsystem’s state of health and operability and presents some of the developments that have taken place in its operation since the completion of instrument commissioning.
The NIRSpec instrument on the James Webb Space Telescope (JWST) brings the first multi-object spectrograph (MOS) into space, enabled by a programmable Micro Shutter Array (MSA) of ∼250,000 individual apertures. During the 6-month Commissioning period, the MSA performed admirably, completing ∼800 reconfigurations with an average success rate of ∼96% for commanding shutters open in science-like patterns. We show that 82.5% of the unvignetted shutter population is usable for science, with electrical short masking now the primary cause of inoperable apertures. In response, we propose a plan to recheck existing shorts during nominal operations, which is expected to reduce the number of affected shutters. We also present a full assessment of the Failed Open and Failed Closed shutter populations, which both show a marginal increase in line with predictions from ground testing. We suggest an amendment to the Failed Closed shutter flagging scheme to improve flexibility for MSA configuration planning. Overall, the NIRSpec MSA performed very well during Commissioning, and the MOS mode was declared ready for science operations on schedule.
The Near-Infrared Spectrograph (NIRSpec) is one of the four focal plane instruments on the James Webb Space Telescope which was launched on Dec. 25, 2021. We present an overview of the as-run NIRSpec commissioning campaign, with particular emphasis on the sequence of activities that led to the verification of all hardware components of NIRSpec. We also discuss the mechanical, thermal, and operational performance of NIRSpec, as well as the readiness of all NIRSpec observing modes for use in the upcoming JWST science program.
The microshutter array (MSA) is a key component in the James Webb Space Telescope Near Infrared Spectrometer
(NIRSpec) instrument. The James Webb Space Telescope is the next generation of a space-borne astronomy platform
that is scheduled to be launched in 2013. However, in order to effectively operate the array and meet the severe
operational requirements associated with a space flight mission has placed enormous constraints on the microshutter
array subsystem. This paper will present an overview and description of the entire microshutter subsystem including the
microshutter array, the hybridized array assembly, the integrated CMOS electronics, mechanical mounting module and
the test methodology and performance of the fully assembled microshutter subsystem. The NIRSpec is a European
Space Agency (ESA) instrument requiring four fully assembled microshutter arrays, or quads, which are independently
addressed to allow for the imaging of selected celestial objects onto the two 4 mega pixel IR detectors. Each
microshutter array must have no more than ~8 shutters which are failed in the open mode (depending on how many are
failed closed) out of the 62,415 (365x171) total number of shutters per array. The driving science requirement is to be
able to select up to 100 objects at a time to be spectrally imaged at the focal plane. The spectrum is dispersed in the
direction of the 171 shutters so if there is an unwanted open shutter in that row the light from an object passing through
that failed open shutter will corrupt the spectrum from the intended object.
KEYWORDS: James Webb Space Telescope, Spectrographs, Electronics, Galactic astronomy, Near infrared, Astronomical imaging, Camera shutters, Silicon, Space telescopes, Imaging spectroscopy
One of the James Webb Space Telescope's (JWST) primary science goals is to characterize the epoch of galaxy formation in
the universe and observe the first galaxies and clusters of galaxies. This goal requires multi-band imaging and spectroscopic
data in the near infrared portion of the spectrum for large numbers of very faint galaxies. Because such objects are
sparse on the sky at the JWST resolution, a multi-object spectrograph is necessary to efficiently carry out the required
observations. We have developed a fully programmable array of microshutters that will be used as the field selector
for the multi-object Near Infrared Spectrograph (NIRSpec) on JWST. This device allows apertures to be opened at the
locations of selected galaxies in the field of view while blocking other unwanted light from the sky background and bright
sources. In practice, greater than 100 objects within the field of view can be observed simultaneously. This field selection
capability greatly improves the sensitivity and efficiency of NIRSpec. In this paper, we describe the microshutter arrays,
their development, characteristics, fabrication, testing, and progress toward delivery of a flight-qualified field selection
subsystem to the NIRSpec instrument team.
We have developed microshutter array systems at NASA Goddard Space Flight Center for use as multi-object
aperture arrays for a Near-Infrared Spectrometer (NIRSpec) instrument. The instrument will be carried on the
James Webb Space Telescope (JWST), the next generation of space telescope, after the Hubble Space
Telescope retires. The microshutter arrays (MSAs) are designed for the selective transmission of light from
objected galaxies in space with high efficiency and high contrast. Arrays are close-packed silicon nitride
membranes with a pixel size close to 100x200 μm. Individual shutters are patterned with a torsion flexure
permitting shutters to open 90 degrees with minimized stress concentration. In order to enhance optical
contrast, light shields are made on each shutter to prevent light leak. Shutters are actuated magnetically,
latched and addressed electrostatically. The shutter arrays are fabricated using MEMS bulk-micromachining
and packaged utilizing a novel single-sided indium flip-chip bonding technology. The MSA flight system
consists of a mosaic of 2 x 2 format of four fully addressable 365 x 171 arrays. The system will be placed in
the JWST optical path at the focal plane of NIRSpec detectors. MSAs that we fabricated passed a series of
qualification tests for flight capabilities. We are in the process of making final flight-qualified MSA systems
for the JWST mission.
KEYWORDS: Camera shutters, Electrodes, Magnetism, Indium, Silicon, James Webb Space Telescope, Optical fabrication, Metals, Microelectromechanical systems, Space telescopes
A complex MEMS device, microshutter array system, is being developed at NASA Goddard Space Flight
Center for use as an aperture array for a Near-Infrared Spectrometer (NirSpec). The instrument will be
carried on the James Webb Space Telescope (JWST), the next generation of space telescope after Hubble
Space Telescope retires. The microshutter arrays (MSAs) are designed for the selective transmission of light
with high efficiency and high contrast. Arrays are close-packed silicon nitride membranes with a pixel size
close to 100x200 &mgr;m. Individual shutters are patterned with a torsion flexure permitting shutters to open 90
degrees with a minimized mechanical stress concentration. Light shields are made on to each shutter for light
leak prevention so to enhance optical contrast. Shutters are actuated magnetically, latched and addressed
electrostatically. The shutter arrays are fabricated using MEMS bulk-micromachining technologies and
packaged using single-sided indium flip-chip bonding technology. The MSA flight concept consists of a
mosaic of 2 x 2 format of four fully addressable 365 x 171 arrays placed in the JWST optical path at the focal
plane.
KEYWORDS: Camera shutters, Electrodes, Indium, Magnetism, Silicon, James Webb Space Telescope, Optical fabrication, Metals, Microelectromechanical systems, Space telescopes
MEMS microshutter arrays (MSAs) are being developed at NASA Goddard Space Flight Center for use as an aperture
array for the Near-Infrared Spectrometer (NirSpec). The instruments will be carried on the James Webb Space
Telescope (JWST), the next generation of space telescope after Hubble Space Telescope retires. The microshutter arrays
are designed for the selective transmission of light with high efficiency and high contrast. Arrays are close-packed
silicon nitride membranes with a pixel size of 105x204 μm. Individual shutters are patterned with a torsion flexure
permitting shutters to open 90 degrees with a minimized mechanical stress concentration. Light shields are made on each
shutter for light leak prevention to enhance optical contrast. Shutters are actuated magnetically, latched and addressed
electrostatically. The shutter arrays are fabricated using MEMS technologies. Single-side indium flip chip bonding is
performed to attach microshutter arrays to substrates.
Rapid progress in the AlGaN (Eg=3.4-6.2eV), 4H-SiC (Eg=3.2eV) and ZnMgO (Eg=2.8-7.9eV) material systems over the last five years has led to the demonstration of a number of opto-electronic devices. These wide energy band gap devices offer several key advantages for space applications, over conventional Si (Eg=1.1eV) based devices, such as visible-blind detection, high thermal stability, better radiation hardness, high breakdown electric field, high chemical inertness and greater mechanical strength. Furthermore, the shorter cut-off wavelength of these material systems eliminates the need for bulky and expensive optical filtering components mitigating risk and allowing for simpler optical design of instrumentation. In this paper, we report on the development at NASA/Goddard of ultra-sensitive, high quantum efficiency AlGaN and 4H-SiC Schottky barrier UV-EUV photodiodes, 4H-SiC UV single photon avalanche diodes, large format 256x256 AlGaN UV p-i-n photodiode arrays and recent progress in elemental substitution for p-type and enhanced n-type doping of ZnO.
KEYWORDS: Camera shutters, Electrodes, Silicon, Metals, Magnetism, James Webb Space Telescope, Optical fabrication, Microelectromechanical systems, Semiconducting wafers, Reactive ion etching
Micro Electromechanical System (MEMS) microshutter arrays are being developed at NASA Goddard Space Flight Center for use as a field selector of the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST). The microshutter arrays are designed for the spontaneous selection of a large number of objects in the sky and the transmission of light to the NIRSpec detector with high contrast. The JWST environment requires cryogenic operation at 35 K. Microshutter arrays are fabricated out of silicon-on-insulator (SOI) silicon wafers. Arrays are close-packed silicon nitride membranes with a pixel size of 100 x 200 μm. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. Light shields are processed for blocking light from gaps between shutters and frames. The mechanical shutter arrays are fabricated using MEMS technologies. The processing includes multi-layer metal depositions, the patterning of magnetic stripes and shutter electrodes, a reactive ion etching (RIE) to form shutters out of the nitride membrane, an anisotropic back-etch for wafer thinning, followed by a deep RIE (DRIE) back-etch to form mechanical supporting grids and release shutters from the silicon substrate. An additional metal deposition is used to form back electrodes. Shutters are actuated by a magnetic force and latched using an electrostatic force. Optical tests, addressing tests, and life tests are conducted to evaluate the performance and the reliability of microshutter arrays.
Magnetically actuated MEMS microshutter arrays are being developed at the NASA Goddard Space Flight Center for use in a multi-object spectrometer on the James Webb Space Telescope (JWST), formerly Next Generation Space Telescope (NGST). The microshutter arrays are designed for the selective transmission of light with high efficiency and high contrast. The JWST environment requires cryogenic operation at 45K. Microshutter arrays are fabricated out of silicon-on-insulator (SOI) wafers. Arrays consist of close-packed shutters made on silicon nitride (nitride) membranes with a pixel size of 100 × 100 m. Individual shutters are patterned with a torsion flexure permitting shutters to open 90°, with a minimized mechanical stress concentration. Shutters operated this way have survived fatigue life test. The mechanical shutter arrays are fabricated using MEMS technologies. The processing includes a multi-layer metal deposition, patterning of shutter electrodes and magnetic pads, reactive ion etching (RIE) of the front side to form shutters in a nitride film, an anisotropic back-etch for wafer thinning, and a deep RIE (DRIE) back-etch, down to the nitride shutter layer, to form support frames and relieve shutters from the silicon substrate. An additional metal deposition and patterning has recently been developed to form electrodes on the vertical walls of the frame. Shutters are actuated using a magnetic force, and latched electrostatically. One-dimensional addressing has been demonstrated.
KEYWORDS: Camera shutters, Electrodes, Silicon, Semiconducting wafers, Magnetism, Oxides, Deep reactive ion etching, Etching, Reactive ion etching, Space telescopes
Two-dimensional microshutter arrays are being developed at NASA Goddard Space Flight Center (GSFC) for the Next Generation Space Telescope (NGST) for use in the near-infrared region. Functioning as focal plane object selection devices, the microshutter arrays are 2-D programmable masks with high efficiency and high contrast. The NGST environment requires cryogenic operation at 45 K. Arrays are close-packed silicon nitride membranes with a unit cell size of 100x100 micrometer. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with minimized mechanical stress concentration. The mechanical shutter arrays are fabricated with MEMS technologies. The processing includes a RIE front-etch to form shutters out of the nitride membrane, an anisotropic back-etch for wafer thinning, and a deep RIE (DRIE) back-etch down to the nitride shutter membrane to form frames and to relieve the shutters from the silicon substrate. A layer of magnetic material is deposited onto each shutter. Onto the side-wall of the support structure a metal layer is deposited that acts as a vertical hold electrode. Shutters are rotated into the support structure by means of an external magnet that is swept across the shutter array for opening. Addressing is performed through a scheme using row and column address lines on each chip and external addressing electronics.
KEYWORDS: Camera shutters, Etching, Semiconducting wafers, Silicon, Deep reactive ion etching, Magnetism, Electrodes, Oxides, Space telescopes, Microelectromechanical systems
Two-dimensional microshutter arrays are being developed at NASA Goddard Space Flight Center for the Next Generation Space Telescope (NGST) for use in the near-infrared region. Functioning as object selection devices, the microshutter arrays are designed for the transmission of light with high efficiency and high contrast. The NGST environment requires cryogenic operation at 45K. Arrays are close-packed silicon nitride membranes with a pixel size of 100 X 100 micrometers . Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. The mechanical shutter arrays are fabricated with MEMS technologies. The processing includes a RIE front-etch to form shutters out of the nitride membrane, an anisotropic back-etch for wafer thinning, and a deep RIE (DRIE) back-etch down to the nitride shutter membrane to form frames and to relieve shutters from the silicon substrate. Two approaches for shutter actuation have been developed. Shutters are actuated using either a combined mechanical and electrostatic force or a combined magnetic and electrostatic force. A CMOS circuit embedded in the frame between shutters allows programmable shutter selection for the first approach. A control of row and column electrodes fulfills shutter selection for the second approach.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.