Nanostructured semiconducting carbon system, described by as a superlattice-like structure demonstrated its potential in switching device applications based on the quantum tunneling through the insulating carbon layer. This switching property can be enhanced further with the association of Josephson’s tunneling between two superconducting carbon (diamond) grains separated by a very thin layer of carbon which holds the structure of the film firmly. The superconducting nanodiamond heterostructures form qubits which can lead to the development of quantum computers provided the effect of disorder present in these structure can be firmly understood. Presently we concentrate on electrical transport properties of heavily boron–doped nanocrystalline diamond films around the superconducting transition temperature measured as a function of magnetic fields and the applied bias current. Microstructure of these films is described by a two dimensional superlattice system which can also contain paramagnetic impurities. We report observation of anomalous negative Hall resistance in these films close to the superconductor-insulator-normal phase transition in the resistance versus temperature plots at low bias currents at zero and low magnetic field. The negative Hall effect is found to be suppressed as the bias current increase. Magnetoresistance study shows a distinct peak at zero field when measured in the low current regimes which suggest a superconductor-insulator-superconductor structure of films. Current vs. voltage characteristics show signature of π-Josephson like behaviour which can give rise to a characteristic frequency of several hundred of gigahertz. Signature of spin flipping also shows novel spintronic device applications.
We utilize nano-manipulting probes for the fabrication of a range of devices including multilayered graphene coplanar waveguides, suspended multilayered graphene hall bars and air-gap single crystal organic field effect transistors. We find that devices fabricated using this technique are of high quality and can be used to probe not only application based phenomena (such as transistor behaviour), but also fundamental quantum transport properties. Magnetoresistance measurements show that the multilayered graphene devices exhibit either quantum linear magnetoresistance (QLMR) or Shubnikov de-Haas oscillations depending on the topology (i.e. either wrinkled or smooth) of the graphene sheet. From this data we calculate the carrier density (ns) in the wrinkled graphene to be in the range 5.2 × 109 cm-2 (at B~0) to 3.5 × 1013 cm-2 (at B=12 T) with effective masses of 0.001me and 0.121me, respectively. The smooth multilayer graphene devices have a carrier density 1.39 - 2.85 × 1012 cm-2 and effective mass (0.022me ≤ m*≤ 0.032me) as calculated from the analysis of the Shubnokov de-Haas oscillations. The high frequecny coplanar waveguide devices fabricated using this technique demonstrated high transmission up to 50 GHz, highlighting the potential for HF application. Organic field effect transistors were also fabricated using the manipulation technique, the transfere characteristics were measured, it was found that the devcies with channel length of 1 μm have non-linear transfere characterisitcs and pass a maximum current of between 0.1 and 10 nA. These OFET devices showed pronounced switching behaviour with mobilities of up to 3 cm2V-1s-1 in the best devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.