We present the on-sky commissioning and science verification of DESHIMA 2.0: the first science-grade integrated superconducting spectrometer (ISS) for ultra-wideband mm-submm spectroscopy. With an instantaneous band coverage of 205-392 GHz at a spectral resolution of F/dF = 500, DESHIMA 2.0 will be applied to emission line surveys and redshift measurement of dusty star-forming galaxies, spectroscopic Sunyaev–Zeldovich effect observations of galaxy-clusters, and other new science cases that utilize its ultra-wide bandwidth. Compared to its predecessor (DESHIMA 1.0), DESHIMA 2.0’s superconducting filterbank chip with a x4 higher optical efficiency, x4 wider instantaneous bandwidth, x20 faster position switching on the sky, and a remotely-controlled optics alignment system. DESHIMA 2.0 is currently installed on the ASTE 10-m telescope at 4860 m altitude with excellent sky transmission, and is being commissioned for science operation. In the conference we will report the on-sky performance and latest results in the science-verification campaign at ASTE.
With recent advances in quantum technologies for applications such as communication, cryptography, computing, metrology and sensing, the performance and scalability of single-photon detection as a vital key component is becoming increasingly important. At the same time, ongoing efforts in the development of high-performance photonic integrated circuits (PIC) benefit the miniaturization and scalability of these quantum technologies. Waveguide-integrated superconducting nanowire single-photon detectors (WI-SNSPDs) allow to combine excellent performance metrics, such as high detection efficiency, low dark-count rates and low timing jitter below 20 ps with the scalability and functionality that PIC platforms such as Si3N4 provide. We have previously demonstrated broadband efficient single-photon detection with a single device over a range from visible to mid-infrared wavelengths and ultra-fast detector recovery times allowing for up to GHz count rates. Here, we present the utilization of WI-SNSPDs for discrete-variable quantum cryptography receivers with the complete photonic circuitry embedded together with the single-photon detectors on a single silicon chip, where the secret-key rates greatly benefit from the short recovery times of the detectors especially for metropolitan distances. We further realize a fully packaged 64 channel WI-SNSPD matrix for use in a wavelengthdivision multiplexed QKD setup.
KEYWORDS: Photodetectors, Sensors, Photonics systems, Data processing, Chemical elements, Temporal resolution, Superconductors, Single photon detectors, Single photon, Quantum information
One key challenge in transferring single-photon based quantum technologies from a laboratory environment ‘into the field’ are the limited count rates achievable with today's hardware based on individual detection units. To overcome this limitation we have developed key components pushing beyond the bandwidth-limit of single devices with a massively parallelized (x64) single-photon detection system. Here, detector elements based on superconducting nanowires are optimized for lowest reset times and highest temporal resolution. On-chip (FPGA) data processing over all detector channels provides a viable solution to pre-process the potentially massive amount of initial data which is demonstarted in a QKD experiment.
Upcoming quantum technologies require scalable and cost-efficient technical solutions for widespread functionality. In order to exploit the quantum states of light, single-photon detectors are essential for application. Here, we present a low-footprint plug-and-play multi-channel single-photon detector system featuring integrated photonics that allows for ultra-fast quantum key distribution (QKD). Each channel comprises a superconducting nanowire single-photon detector (SNSPD) patterned from a niobium-titanium nitride (NbTiN) superconducting film atop silicon nitride waveguide structures. Subsequently, the on-chip photonics are interfaced by broadband 3D polymeric fiber-to-chip couplers to the ports of an 8x8 fiber array. The readout electronics allow for individual evaluation of up to 64 channels simultaneously. Integrated to a QKD experiment, a pair of the system's detection channels achieves secret key rates of up to 2.5 Mbit/s employing a coherent one-way protocol.
We present a test platform for the Athena X-IFU detection chain, shared between IRAP and CNES. This test bench, housed in a commercial two-stage ADR cryostat provided by Entropy GmbH, will serve as the first demonstration of the representative end-to-end readout chain for the X-IFU, using prototypes of the future flight electronics and currently available subsystems. The focal plane array (FPA), placed at the 50 mK cold stage of the ADR, includes a 1024-pixel array of transition-edge sensor (TES) microcalorimeter spectrometers provided by NASA/GSFC, superconducting amplifiers (SQUIDs) from VTT, as well as superconducting readout electronics for frequency domain multiplexing (FDM), provided by SRON. The detection chain then continues with the prototype room temperature electronics for the X-IFU: the Warm Front-End Electronics (WFEE, provided by APC) and the Digital Readout Electronics (DRE, provided by IRAP). The test bench yields critical feedback on current subsystem designs and electronic interfaces, and in the future will also be used for refining the X-IFU calibration plan as well as laboratory astrophysics experiments relevant to future X-IFU science. In this presentation, we describe the characterization of the cryostat, various design trades for the FPA and readout chain, and recent results from our current setup.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.